ترغب بنشر مسار تعليمي؟ اضغط هنا

With the aid of nanosecond time-resolved X-ray diffraction techniques, we have explored the complex structural dynamics of bismuth under laser-driven compression. The results demonstrate that shocked bismuth undergoes a series of structural transform ations involving four solid structures: the Bi-I, Bi-II, Bi-III and Bi-V phases. The transformation from the Bi-I phase to the Bi-V phase occurs within 4 ns under shock compression at ~11 GPa, showing no transient phases with the available experimental conditions. Successive phase transitions (Bi-V->Bi-III->Bi-II->Bi-I) during the shock release within 30 ns have also been resolved, which were inaccessible using other dynamic techniques.
The high-pressure phase stability of the metastable tetragonal zirconia is still under debate. The transition dynamics of shocked Y2O3 (3 mol%) stabilized tetragonal zirconia ceramics under laser-shock compression has been directly studied using nano second time-resolved X-ray diffraction. The martensitic phase transformation to the monoclinic phase, which is the stable phase for pure zirconia at ambient pressure and room temperature, has been observed during compression at 5 GPa within 20 ns without any intermediates. This monoclinic phase reverts back to the tetragonal phase during pressure release. The results imply that the stabilization effect due to addition of Y2O3 is negated by the shear stress under compression.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا