ترغب بنشر مسار تعليمي؟ اضغط هنا

The cluster of galaxies MS 1512.4+3647 (z=0.372) was observed with Suzaku for 270 ks. Besides the Fe abundance, the abundances of Mg, Si, S, and Ni are separately determined for the first time in a medium redshift cluster (z>0.3). The derived abundan ce pattern of MS 1512.4+3647 is consistent with those of nearby clusters, suggesting that the system has similar contributions from supernovae (SNe) Ia and SNe II to nearby clusters. The number ratio of SNe II to SNe Ia is $sim3$. The estimated total numbers of both SNe II and SNe Ia against gas mass indicate similar correlation with those for the nearby clusters. The abundance results of MS 1512.4+3647 is consistent with the standard scenario that the SN II rate history roughly follows the star-formation history which has a peak at 1<z<2 and then declines by about one order of magnitude toward $zsim0$. The similar number of SNe Ia to the nearby clusters suggests that the SN Ia rate declines steeply from z=0.37 to z=0 and/or SN Ia explosions occurred predominantly at larger redshifts.
We studied the temperature and metal abundance distributions of the intra-cluster medium (ICM) in a group of galaxies NGC 1550 observed with Suzaku. The NGC 1550 is classified as a fossil group, which have few bright member galaxies except for the ce ntral galaxy. Thus, such a type of galaxy is important to investigate how the metals are enriched to the ICM. With the Suzaku XIS instruments, we directly measured not only Si, S, and Fe lines but also O and Mg lines and obtained those abundances to an outer region of ~0.5 r_180 for the first time, and confirmed that the metals in the ICM of such a fossil group are indeed extending to a large radius. We found steeper gradients for Mg, Si, S, and Fe abundances, while O showed almost flat abundance distribution. Abundance ratios of alpha-elements to Fe were similar to those of the other groups and poor clusters. We calculated the number ratio of type II to type Ia supernovae for the ICM enrichment to be 2.9 +- 0.5 within 0.1 r_180, and the value was consistent with those for the other groups and poor clusters observed with Suzaku. We also calculated metal mass-to-light ratios (MLRs) for Fe, O and Mg with B-band and K-band luminosities of the member galaxies of NGC 1550. The derived MLRs were comparable to those of NGC 5044 group in the r<0.1 r_180 region, while those of NGC 1550 are slightly higher than those of NGC 5044 in the outer region.
We studied the high temperature plasma in the direction of the Sculptor supercluster at z=0.108 with Suzaku. Suzaku carried out four observations in the supercluster: namely, A2811, A2811 offset, A2804, A2801 regions in 2005 Nov.--Dec., including the regions beyond the virial radii of these clusters. The study needed precise background estimation because the measured intensity of the redshifted lines, especially those from oxygen, were strongly affected by the the Galactic emission. The spectra taken in the regions outside of the virial radii of the member clusters were used as the background which included both the Galactic and Cosmic X-ray Background (CXB) components. We also used the background data which were taken near the Sculptor supercluster. Temperature and metal abundance profiles were determined to the virial radii of the member clusters, and then we searched for the oxygen line emission in the region outside of the virial radii of the clusters. As a result, the temperature of the clusters decreased toward the virial radii, and the spectral fits for the filament region did not require extra component other than the Galactic and CXB components. We constrained the intensities of O VII and O VIII lines to be less than 8.1 and 5.1 photons cm^-2 s^-1 arcmin^-2, respectively, as 2-sigma upper limits. The intensity of O VII indicates n_H < 1.6e-5 cm^-3 (Z/0.1 Z_solar)^-1/2 (L/25 Mpc)^-1/2, which corresponds to an over density, delta < 60 (Z/0.1 Z_solar)^-1/2 (L/25 Mpc)^-1/2.
The Suzaku X-ray satellite observed the nearby spiral galaxy NGC 4258 for a total good exposure time of 100 ks. We present an analysis of the Suzaku XIS data, in which we confirm that the 0.5--2 keV spectra of the interstellar medium (ISM) are well-r epresented by a two-temperature model. The cool and hot ISM temperatures are 0.23+-0.02 and 0.59 +-0.01 keV, respectively. Suzakus excellent spectral sensitivity enables us to measure the metal abundances of O, Ne, Mg, Si and Fe of the ISM for the first time. The resultant abundance pattern of O, Mg, Si, and Fe is consistent with that of the new solar abundance table of Lodders (2003), rather than Anders & Grevesse (1989). This suggests that the metal enrichment processes of NGC 4258 and of our Galaxy are similar.
The metallicity distribution in the intracluster medium of the NGC 5044 group was studied up to 0.3 r_180 using the XIS instrument on board the Suzaku satellite. Abundances of O, Mg, Si, S, and Fe were measured with high accuracy. The region within a radius of 0.05 r_180 from the center shows approximately solar abundances of Mg, Si, S, and Fe, while the O/Fe ratio is about 0.5--0.6 in solar units. In the outer region, the Fe abundance gradually drops to 0.3 solar. Radial abundance profiles of Mg, Si and S are similar to that of Fe, while that of O seems to be flatter. At r>0.05 r_180, the mass density profile of O differs from that of Fe, showing a shoulder-like structure that traces the luminosity density profile of galaxies. The mass-to-light ratios for O and Fe in NGC 5044 are one of the largest among groups of galaxies, but they are still smaller than those in rich clusters. These abundance features probably reflect the metal enrichment history of this relaxed group hosting a giant elliptical galaxy in the center.
Temperature and abundance distributions of the intra-cluster medium (ICM) in the NGC 507 group of galaxies were studied with Suzaku. Observed concentric annular spectra were well-represented by a two temperature model for ICM, and we found steeper ab undance gradients for Mg, Si, S, and Fe compared with O in the central region. Abundance ratios of alpha-elements to iron were found to be similar to those in other groups and poor clusters. We calculated metal mass-to-light ratios for Fe, O and Mg (IMLR, OMLR, MMLR) for NGC 507, and values for different systems were compared. Hotter and richer systems tend to show higher values of IMLR, OMLR, and MMLR. OMLR and MMLR were measured to an outer region for the first time with Suzaku, while IMLR was consistent with that with ASCA. We also looked into 2-dimensional map of the hardness ratio, but found no significant deviation from the circular symmetry.
We present results of 120 ks observation of a compact group of galaxies HCG~62 ($z=0.0145$) with Suzaku XIS and HXD-PIN@. The XIS spectra for four annular regions were fitted with two temperature {it vapec} model with variable abundance, combined wit h the foreground Galactic component. The Galactic component was constrained to have a common surface brightness among the four annuli, and two temperature {it apec} model was preferred to single temperature model. We confirmed the multi-temperature nature of the intra-group medium reported with Chandra and XMM-Newton, with a doughnut-like high temperature ring at radii 3.3--6.5$$ in a hardness image. We found Mg, Si, S, and Fe abundances to be fairly robust. We examined the possible ``high-abundance arc at $sim 2$ southwest from the center, however Suzaku data did not confirm it. We suspect that it is a misidentification of an excess hot component in this region as the Fe line. Careful background study showed no positive detection of the extended hard X-rays previously reported with ASCA, in 5--12 keV with XIS and 12--40 keV with HXD-PIN, although our upper limit did not exclude the ASCA result. There is an indication that the X-ray intensity in $r<3.3$ region is $70pm 19$% higher than the nominal CXB level (5--12 keV), and Chandra and Suzaku data suggest that most of this excess could be due to concentration of hard X-ray sources with an average photon index of $Gamma=1.38pm 0.06$. Cumulative mass of O, Fe and Mg in the group gas and the metal mass-to-light ratio were derived and compared with those in other groups. Possible role of AGN or galaxy mergers in this group is also discussed.
We carried out 3 observations of the cluster of galaxies AWM 7, for the central region and 20-east and 20-west offset regions, with Suzaku. Temperature and abundance profiles are measured out to 27~ 570 /h_70 kpc, which corresponded to ~0.35 r_180. T he temperature of the intra-cluster medium (ICM) slightly decreases from 3.8 keV at the center to 3.4 keV in ~0.35 r_180 region, indicating a flatter profile than those in other nearby clusters. Abundance ratio of Si to Fe is almost constant in our observation, while Mg to Fe ratio increases with radius from the cluster center. O to Fe ratio in the west region shows increase with radius, while that in the east region is almost flat, though the errors are relatively large. These features suggest that the enrichment process is significantly different between products of type II supernovae (O and Mg) and those by type Ia supernovae (Si and Fe). We also examined positional shift of the central energy of He-like Fe-Ka line, in search of possible rotation of the ICM. The 90% upper limit for the line-of-sight velocity difference was derived to be v ~ 2000 km/s, suggesting that the ellipticity of AWM 7 is rather caused by a recent directional infall of the gas along the large-scale filament.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا