ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate a new photo-induced oxidation technique for tuning GaAs photonic crystal cavities using a $390~mathrm{nm}$ pulsed laser with an average power of $10~mathrm{mu W}$. The laser oxidizes a small $left(sim 500~mathrm{nm}right)$ diameter spo t, reducing the local index of refraction and blueshifting the cavity. The tuning progress can be actively monitored in real time. We also demonstrate tuning an individual cavity within a pair of proximity-coupled cavities, showing that this method can be used to correct undesired frequency shifts caused by fabrication imperfections in cavity arrays.
We demonstrate a novel method for deterministic charging of InAs quantum dots embedded in photonic crystal nanoresonators using a unique vertical p-n-i-n junction within the photonic crystal membrane. Charging is confirmed by the observation of Zeema n splitting for magnetic fields applied in the Voigt configuration. Spectrally resolved photoluminescence measurements are complemented by polarization resolved studies that show the precise structure of the Zeeman quadruplet. Integration of quantum dots in nanoresonators strongly enhances far-field collection efficiency and paves the way for the exploitation of enhanced spin-photon interactions for fabrication of efficient quantum nodes in a scalable solid state platform.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا