ترغب بنشر مسار تعليمي؟ اضغط هنا

77 - Konrad Waldorf 2015
A central extension of the loop group of a Lie group is called transgressive, if it corresponds under transgression to a degree four class in the cohomology of the classifying space of the Lie group. Transgressive loop group extensions are those that can be explored by finite-dimensional, higher-categorical geometry over the Lie group. We show how transgressive central extensions can be characterized in a loop-group theoretical way, in terms of loop fusion and thin homotopy equivariance.
Parallel transport of a connection in a smooth fibre bundle yields a functor from the path groupoid of the base manifold into a category that describes the fibres of the bundle. We characterize functors obtained like this by two notions we introduce: local trivializations and smooth descent data. This provides a way to substitute categories of functors for categories of smooth fibre bundles with connection. We indicate that this concept can be generalized to connections in categorified bundles, and how this generalization improves the understanding of higher dimensional parallel transport.
We introduce an axiomatic framework for the parallel transport of connections on gerbes. It incorporates parallel transport along curves and along surfaces, and is formulated in terms of gluing axioms and smoothness conditions. The smoothness conditi ons are imposed with respect to a strict Lie 2-group, which plays the role of a band, or structure 2-group. Upon choosing certain examples of Lie 2-groups, our axiomatic framework reproduces in a systematical way several known concepts of gerbes with connection: non-abelian differential cocycles, Breen-Messing gerbes, abelian and non-abelian bundle gerbes. These relationships convey a well-defined notion of surface holonomy from our axiomatic framework to each of these concrete models. Till now, holonomy was only known for abelian gerbes; our approach reproduces that known concept and extends it to non-abelian gerbes. Several new features of surface holonomy are exposed under its extension to non-abelian gerbes; for example, it carries an action of the mapping class group of the surface.
We establish a relation between smooth 2-functors defined on the path 2-groupoid of a smooth manifold and differential forms on this manifold. This relation can be understood as a part of a dictionary between fundamental notions from category theory and differential geometry. We show that smooth 2-functors appear in several fields, namely as connections on (non-abelian) gerbes, as curvatures of smooth functors and as critical points in BF theory. We demonstrate further that our dictionary provides a powerful tool to discuss the transgression of geometric objects to loop spaces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا