ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational lens models with negative convergence inspired by modified gravity theories, exotic matter and energy have been recently examined, in such a way that a static and spherically symmetric modified spacetime metric depends on the inverse di stance to the $n$-th power ($n=1$ for Schwarzschild metric, $n=2$ for Ellis wormhole, and $n eq 1$ for an extended spherical distribution of matter such as an isothermal sphere) in the weak-field approximation [Kitamura, Nakajima and Asada, PRD 87, 027501 (2013), Izumi et al. PRD 88 024049 (2013)]. Some of the models act as if a convex lens, whereas the others are repulsive on light rays like a concave lens. The present paper considers microlensed image centroid motions by the exotic lens models. Numerical calculations show that, for large $n$ cases in the convex-type models, the centroid shift from the source position might move on a multiply-connected curve like a bow tie, while it is known to move on an ellipse for $n=1$ case and to move on an oval curve for $n=2$. The distinctive feature of the microlensed image centroid may be used for searching (or constraining) localized exotic matter or energy with astrometric observations. It is shown also that the centroid shift trajectory for concave-type repulsive models might be elongated vertically to the source motion direction like a prolate spheroid, whereas that for convex-type models such as the Schwarzschild one is tangentially elongated like an oblate spheroid.
Gravitational lens models with negative convergence(surface mass density projected onto the lens plane) inspired by modified gravity theories, exotic matter and energy have been recently discussed in such a way that a static and spherically-symmetric modified spacetime metric depends on the inverse distance to the power of positive $n$(n=1 for Schwarzschild metric, n=2 for Ellis wormhole) in the weak-field approximation [Kitamura, Nakajima and Asada, PRD 87, 027501 (2013)], and it has been shown that demagnification of images could occur for $n>1$ lens models associated with exotic matter (and energy), though they cause the gravitational pull on light rays. The present paper considers gravitational lensing shear by the demagnifying lens models and other models such as negative-mass compact objects causing the gravitational repulsion on light rays like a concave lens. It is shown that images by the lens models for the gravitational pull are tangentially elongated, whereas those by the repulsive ones are radially distorted. This feature of lensed image shapes may be used for searching(or constraining) localized exotic matter or energy with gravitational lensing surveys. It is suggested also that an underdense region such as a cosmic void might produce radially elongated images of background galaxies rather than tangential ones.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا