ترغب بنشر مسار تعليمي؟ اضغط هنا

We followed-up the massive young stellar object (MYSO) S255-NIRS3 (=S255-IRS1b) during its recent accretion outburst event in the Ks band with Kanata/HONIR for four years after its burst and obtained a long-term light curve. This is the most complete NIR light-curve of the S255-NIRS3 burst event that has ever been presented. The light curve showed a steep increase reaching a peak flux that was 3.4 mag brighter than the quiescent phase and then a relatively moderate year-scale fading until the last observation, similar to that of the accretion burst events such as EXors found in lower-mass young stellar objects. The behavior of the Ks band light curve is similar to that observed in 6.7 GHz class II methanol maser emission, with a sudden increase followed by moderate year-scale fading. However, the maser emission peaks appear 30-50 days earlier than that of the Ks band emission. The similarities confirmed that the origins of the maser emission and the Ks band continuum emission is common as previously shown from another infrared and radio observations by Stecklum et al. (2016); Caratti o Garatti et al. (2017a); Moscadelli et al. (2017). However, the differences in energy transfer paths, such as the exciting/emitting/scattering structures, may cause the delay in the flux-peak dates.
For the sake of high-sensitivity 6.7 GHz methanol maser observations, we developed a new technology for coherently combining the two signals from the Hitachi 32 m radio telescope and the Takahagi 32 m radio telescope of the Japanese Very long baselin e interferometer Network (JVN), where the two telescopes were separated by about 260 m. After the two telescopes were phased as a twofold larger single telescope, the mean signal-to-noise ratio (SNR) of the 6.7 GHz methanol masers observed by the phased telescopes was improved to 1.254-fold higher than that of the single dish, through a Very Long Baseline Interferometry (VLBI) experiment on the 50 km baseline of the Kashima 34 m telescope and the 1000 km baseline of the Yamaguchi 32 m telescope. Furthermore, we compared the SNRs of the 6.7 GHz maser spectra for two methods. One is a VLBI method and the other is the newly developed digital position switching, which is a similar technology to that used in noise-cancelling headphones. Finally, we confirmed that the mean SNR of method of the digital position switching (ON-OFF) was 1.597-fold higher than that of the VLBI method.
We detected flaring flux variability that regularly occurred with the period of 23.9 days on a 6.7 GHz methanol maser emission at Vlsr = 25.30 km/s in G 014.23-00.50 through highly frequent monitoring using the Hitachi 32-m radio telescope. By analyz ing data from 05 January 2013 to 21 January 2016, the periodic variability has persisted in at least 47 cycles, corresponding to approximately 1,100 days. The period of 23.9 days is the shortest one observed in masers at around high-mass young stellar objects so far. The flaring component normally falls below the detection limit (3 sigma) of 0.9 Jy. In the flaring periods, the component rises above the detection limit with the ratio of the peak flux density more than 180 in comparison with a quiescent phase, showing intermittent periodic variability. The time-scale of the flux rise was typically two days or shorter, and both symmetric and asymmetric profiles of flux variability were observed through intraday monitoring. These characteristics might be explained by a change in the flux of seed photons by a colliding-wind binary (CWB) system or a variation of the dust temperature by an extra heating source of a shock formed by the CWB system within a gap region in a circumbinary disk, in which the orbital semi-major axes of the binary are 0.26-0.34 au.
We have carried out the first very long baseline interferometry (VLBI) imaging of 44 GHz class I methanol maser (7_{0}-6_{1}A^{+}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151-1208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7 milliarcseconds x 1.5 milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than approximately 650 km corresponding to 100 Mlambda in the uv-coverage. The central velocity and the velocity width of the 44 GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ~ 5 mas x 2 mas, which corresponds to the linear size of ~ 15 AU x 6 AU assuming a distance of 3 kpc. The brightness temperatures of these features range from ~ 3.5 x 10^{8} to 1.0 x 10^{10} K, which are higher than estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ~ 50 mas. The 44 GHz class I methanol maser in IRAS 18151-1208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7 GHz class II methanol maser.
We present the first internal motion measurement of the 6.7-GHz methanol maser within S269, a small HII region in the outer Galaxy, which was carried out in 2006 and 2011 using the Japanese VLBI Network (JVN). Several maser groups and weak isolated s pots were detected in an area spanning by ~200 mas (1000 AU). Three remarkable maser groups are aligned at a position angle of 80 degree. Two of three maser groups were also detected by a previous observation in 1998, which allowed us to study a long-term position variation of maser spots from 1998 to 2011. The angular separation between the two groups increased ~10 mas, which corresponds to an expansion velocity of ~10 km s^{-1}. Some velocity gradient (~10^{-2} km s^{-1} mas^{-1}) in the overall distribution was found. The internal motion between the maser groups support the hypothesis that the methanol masers in S269 could trace a bipolar outflow.
We report the detection of bursts of 6.7 GHz methanol maser emission in a high-mass star-forming region, G33.64-0.21. One of the spectral components of the maser in this source changed its flux density by 7 times that of the previous day, and it deca yed with a timescale of 5 days. The burst occurred repeatedly in the spectral component, and no other components showed such variability. A VLBI observation with the Japanese VLBI Network (JVN) showed that the burst location was at the southwest edge of a spatial distribution, and the bursting phenomenon occurred in a region much smaller than 70 AU. We suggest an impulsive energy release like a stellar flare as a possible mechanism for the burst. These results imply that 6.7 GHz methanol masers could be a useful new probe for studying bursting activity in the process of star formation of high-mass YSOs with a high-resolution of AU scale.
We present the results of daily monitoring of 6.7 GHz methanol maser in Cepheus A (Cep A) using Yamaguchi 32-m radio telescope as well as the results of imaging observations conducted with the JVN (Japanese VLBI Network). We indentified five spectral features, which are grouped into red-shifted (-1.9 and -2.7 km/s) and blue-shifted (-3.8, -4.2, and -4.9 km/s), and we detected rapid variabilities of these maser features within a monitoring period of 81 days. The red-shifted features decreased in flux density to 50% of its initial value, while the flux density of the blue-shifted features rapidly increased within a 30 days. The time variation of these maser features showed two remarkable properties; synchronization and anti-correlation between the red-shifted and the blue-shifted. The spatial distribution of the maser spots obtained by the JVN observation showed an arclike structure with a scale of $sim$1400 AU, and separations of the five maser features were found to be larger than 100 AU. The absolute position of the methanol maser was also obtained based on the phase-referencing observations, and the arclike structure were found to be associated with the Cep A-HW2 object, with the elongation of the arclike structure nearly perpendicularly to the radio continuum jet from the Cep A-HW2 object. These properties of the masers, namely, the synchronization of flux variation, and the spectral and spatial isolation of features, suggest that the collisional excitation by shock wave from a common exciting source is unlikely. Instead, the synchronized time variation of the masers can be explained if all the maser features are excited by infrared radiation from dust which is heated by a common exciting source with a rapid variability.
We have observed 13 methanol maser sources associated with massive star-forming regions; W3(OH), Mon R2, S 255, W 33A, IRAS 18151-1208, G 24.78+0.08, G 29.95-0.02, IRAS 18556+0136, W 48, OH 43.8-0.1, ON 1, Cep A and NGC 7538 at 6.7 GHz using the Japa nese VLBI Network (JVN). Twelve of the thirteen sources were detected at our longest baseline of $sim$50 M$lambda$, and their images are presented. Seven of them are the first VLBI images at 6.7 GHz. This high detection rate and the small fringe spacing of $sim$4 milli-arcsecond suggest that most of the methanol maser sources have compact structure. Given this compactness as well as the known properties of long-life and small internal-motion, this methanol maser line is suitable for astrometry with VLBI.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا