ترغب بنشر مسار تعليمي؟ اضغط هنا

In order to reveal many-body interactions in the three-dimensional (3D) perovskite manganite, we have performed an $in$ $situ$ angle-resolved photoemission spectroscopy (ARPES) on La$_{0.6}$Sr$_{0.4}$MnO$_3$ (LSMO) and investigated the behaviors of q uasiparticles. We observe quasiparticle peaks around the Fermi momentum, both in the electron and the hole bands, and clear kinks throughout the hole Fermi surface in the ARPES band dispersion. The isotropic behavior sharply contrasts to the strong anisotropic quasiparticle excitation observed in layered manganites. These results suggest that polaronic quasiparticles by coupling of the electrons with Jahn-Teller phonons play an important role in the physical properties of the ferromagnetic metallic phase in 3D manganite LSMO.
$In$ $situ$ angle-resolved photoemission spectroscopy (ARPES) has been performed on SrVO$_3$ ultrathin films, which show metallic quantum well (QW) states, to unveil the origin of the anomalous mass enhancement in the QW subbands. The line-shape anal ysis of the ARPES spectra reveals that the strength of the electron correlation increases as the subband bottom energy approaches the Fermi level. These results indicate that the anomalous subband-dependent mass enhancement mainly arises from the quasi-one-dimensional character of confined V $3d$ states as a result of their orbital-selective quantization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا