ترغب بنشر مسار تعليمي؟ اضغط هنا

We report finding kiloparsec-scale radio emissions aligned with parsec-scale jet structures in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 1239 using the Very Large Array and the Very Long Baseline Array. Thus, this radio-quiet NLS1 has a jet-produci ng central engine driven by essentially the same mechanism as that of other radio-loud active galactic nuclei (AGNs). Most of the radio luminosity is concentrated within 100 parsecs and overall radio morphology looks edge-darkened; the estimated jet kinetic power is comparable to Fanaroff--Riley Type I radio galaxies. The conversion from accretion to jet power appears to be highly inefficient in this highly accreting low-mass black hole system compared with that in a low-luminosity AGN with similar radio power driven by a sub-Eddington, high-mass black hole. Thus, Mrk 1239 is a crucial probe to the unexplored parameter spaces of central engines for a jet formation.
We made simultaneous single-dish and very long baseline interferometer (VLBI) observations of a narrow-line Seyfert 1 galaxy (NLS1) 1H 0323+342, showing gamma-ray activity revealed by Fermi/LAT observations. We found significant variation of the tota l flux density at 8 GHz on the time scale of one month by the single-dish monitoring. The total flux density varied by 5.5% in 32 days, which is comparable to the gamma-ray variability time scale, corresponding to the variability brightness temperature of $7.0 times 10^{11}$ K. The source consists of central and southeastern components on the parsec (pc) scale. The flux of only the central component decreased in the same way as the total flux density, indicating that the short-term radio variability, and probably the gamma-ray emitting region, is associated with this component. From the VLBI observations we obtained the brightness temperatures of greater than $(5.2 pm 0.3) times 10^{10}$ K, and derived the equipartition Doppler factor of greater than 1.7, the variability Doppler factor of 2.2, and the 8 GHz radio power of $10^{24.6}$ W Hz$^{-1}$. Combining them we conclude that acceleration of radio jets and creation of high-energy particles are ongoing in the central engine, and that the apparent very radio-loud feature of the source is due to the Doppler-boosting effect, resulting in the intrinsic radio loudness to be an order of magnitude smaller than the observed values. We also conclude that the pc-scale jet represents recurrent activity from the the spectral fitting and the estimated kinematic age of pc- and kpc-scale extended components with different position angle.
We performed two types of radiation testing on high-speed LSI chips to test their suitability for use in wideband observations by the Japanese next space VLBI mission, VSOP-2. In the total ionization dose experiment we monitored autocorrelation spect ra which were taken with irradiated LSI chips and the source current at intervals up to 1,000 hours from the ionization dose, but we could not see any change of these features for the chips irradiated with dose rates expected in the VSOP-2 mission. In the single event effect experiment, we monitored the cross correlation phase and power spectra between the data from radiated and non-radiated devices, and the source current during the irradiation of heavy-ions. We observed a few tens of single event upsets as discrete delay jumps for each LSI. We estimated the occurrence rate of single events in space as between once a few days to once a month. No single event latch-up was seen in any of the LSIs. These results show that the tested LSIs have sufficient tolerance to the environment for space VLBI observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا