ترغب بنشر مسار تعليمي؟ اضغط هنا

The type-II see-saw mechanism based on the annexation of the Standard Model by weak gauge triplet scalar field proffers a natural explanation for the very minuteness of neutrino masses. Noting that the phenomenology for the non-degenerate triplet Hig gs spectrum is substantially contrasting than that for the degenerate one, we perform a comprehensive study for an extensive model parameter space parametrised by the triplet scalar vacuum expectation value (VEV), the mass-splitting between the triplet-like doubly and singly charged scalars and the mass of the doubly charged scalar. Considering all Drell-Yan production mechanisms for the triplet-like scalars and taking into account the all-encompassing complexity of their decays, we derive the most stringent 95% CL lower limits on the mass of the doubly charged scalar for a vast model parameter space by implementing already existing direct collider searches by CMS and ATLAS. These estimated limits are beyond those from the existing LHC searches by approximately 50-230 GeV. However, we also find that a specific region of the parameter space is not constrained by the LHC searches. Then, we forecast future limits by extending an ATLAS search at high-luminosity, and we propose a search strategy that yields improved limits for a part of the parameter space.
The type-III seesaw seems to explain the very minuteness of neutrino masses readily and naturally. The high-energy see-saw theories usually involve a larger number of effective parametres than the physical and measurable parametres appearing in the l ow-energy neutrino phenomenology. Casas-Ibarra parametrisation facilitates to encode the information lost in integrating the heavy fermions out in an arbitrary complex orthogonal matrix. The CMS collaboration has already searched for triplet fermions in the type-III seesaw model with only one generation of triplet fermion flavour democratically decaying into SM leptons. We reinterpret this CMS search in the context of a realistic type-III seesaw model with two or three generations of triplet fermions, and endeavour to comprehend the implications of the foregoing matrix on the $95%$ CL lower limit on the mass of the triplet fermions. We also discuss the phenomenological implication of the aforesaid matrix in view of charged lepton flavour violating observables and displaced decays of the triplet fermions at colliders.
We study a model which generates Majorana neutrino masses at tree-level via low-energy effective operator with mass-dimension-9. Introduction of such a higher dimensional operator brings down the lepton number violating mass scale to TeV making such model potentially testable at present or near future colliders. This model possesses several new $SU(2)_L$ fermionic multiplets, in particular, three generations of triplets, quadruplets and quintuplets, and thus a rich phenomenology at the LHC. As the lepton flavour violation arises very naturally in such setup, we put constraints on the Yukawa couplings and heavy fermion masses from the current experimental bounds on lepton flavour violating processes. We also obtain 95% CL lower bounds on the masses of the triplets, quadruplets and quintuplets using a recent CMS search for multilepton final states with 137 inverse femtobarn integrated luminosity data at 13 TeV center of mass energy. The possibility that the heavy fermions could be long-lived leaving disappearing charge track signatures or displaced vertex at the future colliders like LHeC, FCC-he, MATHUSLA, etc. is also discussed.
Universal Extra Dimension (UED) is a well-motivated and well-studied scenario. One of the main motivations is the presence of a dark matter (DM) candidate namely, the lightest level-1 Kaluza-Klein (KK) particle (LKP), in the particle spectrum of UED. The minimal version of UED (mUED) scenario is highly predictive with only two parameters namely, the radius of compactification and cut-off scale, to determine the phenomenology. Therefore, stringent constraint results from the WMAP/PLANCK measurement of DM relic density (RD) of the universe. The production and decays of level-1 quarks and gluons in UED scenarios give rise to multijet final states at the Large Hadron Collider (LHC) experiment. We study the ATLAS search for multijet plus missing transverse energy signatures at the LHC with 13 TeV center of mass energy and 139 inverse femtobarn integrated luminosity. In view of the fact that the DM RD allowed part of mUED parameter-space has already been ruled out by the ATLAS multijet search, we move on to a less restricted version of UED namely, the non-minimal UED (nmUED), with non-vanishing boundary-localized terms (BLTs). The presence of BLTs significantly alters the dark matter as well as the collider phenomenology of nmUED. We obtain stringent bounds on the BLT parameters from the ATLAS multijet plus missing transverse energy search.
57 - Avnish , Kirtiman Ghosh 2020
Explaining the tiny neutrino masses and non-zero mixings have been one of the key motivations for going beyond the framework of the Standard Model (SM). We discuss a collider testable model for generating neutrino masses and mixings via radiative see saw mechanism. That the model does not require any additional symmetry to forbid tree-level seesaws makes its collider phenomenology interesting. The model includes multi-charged fermions/scalars at the TeV scale to realize the Weinberg operator at 1-loop level. After deriving the constraints on the model parameters resulting from the neutrino oscillation data as well as from the upper bound on the absolute neutrino mass scale, we discuss the production, decay and resulting collider signatures of these TeV scale fermions/scalars at the Large Hadron Collider (LHC). We consider both Drell-Yan and photoproduction. The bounds from the neutrino data indicate the possible presence of a long-lived multi-charged particle (MCP) in this model. We obtain bounds on these long-lived MCP masses from the ATLAS search for abnormally large ionization signature. When the TeV scale fermions/scalars undergo prompt decay, we focus on the 4-lepton final states and obtain bounds from different ATLAS 4-lepton searches. We also propose a 4-lepton event selection criteria designed to enhance the signal to background ratio in the context of this model.
We study in detail the collider signatures of an $SU(2)_R$ fermionic quintuplet in the framework of left-right symmetric model in the context of the 13 TeV LHC. Apart from giving a viable dark matter candidate ($chi^0$), this model provides unique co llider imprints in the form of same-sign multileptons through the decays of multi-charged components of the quintuplet. In particular, we consider the scenario where the quintuplet carries $(B - L) = 4$ charge, allowing for the presence of high charge-multiplicity particles with relatively larger mass differences among them compared to $(B - L)$ = 0 or 2. In this paper, we mainly focus on the same-sign n-lepton signatures (nSSL). We show that with an integrated luminosity of 500 $fb^{-1}$, the mass of the neutral component, $M_{chi^0} leq 480~(800)$ GeV can be excluded at 95% CL in the 2SSL (3SSL) channel after imposing several selection criteria. We also show that a $5sigma$ discovery is also achievable if $M_{chi^0} leq 390~(750)$ GeV in the 2SSL (3SSL) channel with 1000 $fb^{-1}$ integrated luminosity.
In the fat-brane realization of Universal Extra Dimension (UED) models, the gravity mediated decays of Kaluza-Klein (KK) excitations of the Standard Model (SM) particles offer interesting collider signals. Colored level-1 KK-particles (quarks $q^1$ a nd/or gluons $g^{1}$) are pair-produced at the colliders due to conserved KK-parity. These particles, then, cascade decay into lighter level-1 KK-particle in association with one or more SM particles until producing lightest KK particle (LKP). The gravity mediation allows LKP to decay into photon or $Z$-boson plus gravity excitation, hence resulting in di-photon/$ZZ$/$Zgamma$ plus missing transverse energy signatures at collider experiments. Alternatively, pair-produced level-1 KK quarks/gluons may directly decay into the corresponding SM quark/gluon and a gravity excitation resulting in di-jet plus missing transverse energy signal. The ATLAS Collaboration has recently communicated the results for di-photon and multi-jet plus missing transverse energy searches with $36.1$ inverse-femtobarn of integrated luminosity at $13$ TeV center-of-mass energy. No significant excess of events above the SM expectation was observed in both searches. We constrain the fat-brane UED model parameters, namely the fundamental Planck mass $M_{D}$ and the size of small extra dimensions $R$, in the light of above-mentioned ATLAS searches.
A detailed study of a fermionic quintuplet dark matter in a left-right symmetric scenario is performed in this article. The minimal quintuplet dark matter model is highly constrained from the WMAP dark matter relic density (RD) data. To elevate this constraint, an extra singlet scalar is introduced. It introduces a host of new annihilation and co-annihilation channels for the dark matter, allowing even sub-TeV masses. The phenomenology of this singlet scalar is studied in detail in the context of the Large Hadron Collider (LHC) experiment. The production and decay of this singlet scalar at the LHC give rise to interesting resonant di-Higgs or diphoton final states. We also constrain the RD allowed parameter space of this model in light of the ATLAS bounds on the resonant di-Higgs and diphoton cross-sections.
Searching for non-standard neutrino interactions, as a means for discovering physics beyond the Standard Model, has one of the key goals of dedicated neutrino experiments, current and future. We demonstrate here that much of the parameter space acces sible to such experiments is already ruled out by the RUN II data of the Large Hadron Collider experiment.
We consider an extension of the Standard Model (SM) augmented by two neutral singlet fermions per generation and a leptoquark. In order to generate the light neutrino masses and mixing, we incorporate inverse seesaw mechanism. The right handed neutri no production in this model is significantly larger than the conventional inverse seesaw scenario. We analyze the different collider signatures of this model and find that the final states associated with three or more leptons, multi jet and at least one b-tagged and (or) $tau$-tagged jet can probe larger RH neutrino mass scale. We have also proposed a same-sign dilepton signal region associated with multiple jets and missing energy that can be used to distinguish the the present scenario from the usual inverse seesaw extended SM.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا