ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe the calculation of all planar master integrals that are needed for the computation of NNLO QCD corrections to the production of two off-shell vector bosons in hadron collisions. The most complicated representatives of integrals in this cl ass are the two-loop four-point functions where two external lines are on the light-cone and two other external lines have different invariant masses. We compute these and other relevant integrals analytically using differential equations in external kinematic variables and express our results in terms of Goncharov polylogarithms. The case of two equal off-shellnesses, recently considered in Ref. [1], appears as a particular case of our general solution.
We consider top quark pair production in association with a hard jet through next-to-leading order in perturbative QCD. Top quark decays are treated in the narrow width approximation and spin correlations are retained throughout the computation. We i nclude hard jet radiation by top quark decay products and explore their importance for basic kinematic distributions at the Tevatron and the LHC. Our results suggest that QCD corrections and jet radiation in decays can lead to significant changes in shapes of basic distributions and, therefore, need to be included for the description of ttbar+jet production. We compare the shape of the transverse momentum distribution of a top quark pair recently measured by the D0 collaboration with the result of our computation and find reasonable agreement.
Spin correlations of top quarks produced in hadron collisions have not been observed experimentally with large significance. In this Letter, we propose a new variable that may enable demonstration of the existence of spin correlations with 3-4 sigma significance using just a few hundred dilepton events both at the Tevatron and the LHC. Such number of dilepton events has been observed at the Tevatron. At the LHC, it will become available once integrated luminosity of a few hundred inverse picobarns is collected.
We compute QCD corrections to the production of a ttbar pair in association with a hard photon at the Tevatron and the LHC. This process allows a direct measurement of the top quark electromagnetic couplings that, at the moment, are only loosely cons trained. We include top quark decays, treating them in the narrow width approximation, and retain spin correlations of final-state particles. Photon radiation off top quark decay products is included in our calculation and yields a significant contribution to the cross-section. We study next-to-leading order QCD corrections to the ppbar -> ttbar+gamma process at the Tevatron for the selection criteria used in a recent measurement by the CDF collaboration. We also discuss the impact of QCD corrections to the pp -> ttbar+gamma process on the measurement of the top quark electric charge at the 14 TeV LHC.
We compute the QCD corrections to the production of a top quark pair in association with one hard jet at the Tevatron and the LHC, using the method of generalized D-dimensional unitarity. Top quark decays are included at leading order in perturbative QCD. We present kinematic distributions of top quark decay products in lepton plus jets and dilepton final states at the Tevatron and the LHC, using realistic selection cuts. We confirm a strong reduction of the top quark forward-backward asymmetry for the process ttbar+jet at the Tevatron at next-to-leading order, first observed by Dittmaier, Uwer and Weinzierl. We argue that there is a natural way to understand this reduction and that it does not imply a breakdown of the perturbative expansion for the asymmetry.
We present results for the next-to-leading order QCD corrections to the production and semi-leptonic decays of a top quark pair in hadron collisions, retaining all spin correlations. To evaluate the virtual corrections, we employ generalized D-dimens ional unitarity. The computation is implemented in a numerical program which allows detailed studies of ttbar-related observables at the Tevatron and the LHC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا