ترغب بنشر مسار تعليمي؟ اضغط هنا

We have developed a two-beam waveguide-type dual-polarization sideband-separating SIS receiver system in the 100-GHz band for {it z}-machine on the 45-m radio telescope at the Nobeyama Radio Observatory. The receiver is intended for astronomical use in searching for highly redshifted spectral lines from galaxies of unknown redshift. This receiver has two beams, which have 45$^{primeprime}$ of beam separation and allow for observation with the switch in the on-on position. The receiver of each beam is composed of an ortho-mode transducer and two sideband-separating SIS mixers, which are both based on a waveguide technique, and the receiver has four intermediate frequency bands of 4.0--8.0 GHz. Over the radio frequency range of 80--116 GHz, the single-sideband receiver noise temperature is lower than about 50 K, and the image rejection ratios are greater than 10 dB in most of the same frequency range. The new receiver system has been installed in the telescope, and we successfully observed a $^{12}$CO ({it J}=3--2) emission line toward a cloverleaf quasar at {it z} = 2.56, which validates the performance of the receiver system. The SSB noise temperature of the system, including the atmosphere, is typically 150--300 K at a radio frequency of 97 GHz. We have begun blind search of high-{it J} CO toward high-{it z} submillimeter galaxies.
We developed a waveguide-type dual-polarization sideband-separating SIS receiver system of the 100-GHz band for the 45-m radio telescope at the Nobeyama Radio Observatory, Japan. This receiver is composed of an ortho-mode transducer and two sideband- separating SIS mixers, which are both based on the waveguide technique. The receiver has four intermediate frequency bands of 4.0--8.0 GHz. Over the radio frequency range of 80--120 GHz, the single-sideband receiver noise temperatures are 50--100 K and the image rejection ratios are greater than 10 dB. We developed new matching optics for the telescope beam as well as new IF chains for the four IF signals. The new receiver system was installed in the telescope, and we successfully observed the 12CO, 13CO and C18O emission lines simultaneously toward the Sagittarius B2 region to confirm the performance of the receiver system. The SSB noise temperature of the system, including the atmosphere, became approximately half of that of the previous receiver system. The Image Rejection Ratios (IRRs) of the two 2SB mixers were calculated from the 12CO and HCO+ spectra from the W51 giant molecular cloud, resulting in > 20 dB for one polarization and > 12 dB for the other polarization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا