ترغب بنشر مسار تعليمي؟ اضغط هنا

We present moderate-resolution ($Rsim4000$) $K$ band spectra of the super-Jupiter, $kappa$ Andromedae b. The data were taken with the OSIRIS integral field spectrograph at Keck Observatory. The spectra reveal resolved molecular lines from H$_{2}$O an d CO. The spectra are compared to a custom $PHOENIX$ atmosphere model grid appropriate for young planetary-mass objects. We fit the data using a Markov Chain Monte Carlo forward modeling method. Using a combination of our moderate-resolution spectrum and low-resolution, broadband data from the literature, we derive an effective temperature of $T_mathrm{eff}$ = 1950 - 2150 K, a surface gravity of $log g=3.5 - 4.5$, and a metallicity of [M/H] = $-0.2 - 0.0$. These values are consistent with previous estimates from atmospheric modeling and the currently favored young age of the system ($<$50 Myr). We derive a C/O ratio of 0.70$_{-0.24}^{+0.09}$ for the source, broadly consistent with the solar C/O ratio. This, coupled with the slightly subsolar metallicity, implies a composition consistent with that of the host star, and is suggestive of formation by a rapid process. The subsolar metallicity of $kappa$ Andromedae b is also consistent with predictions of formation via gravitational instability. Further constraints on formation of the companion will require measurement of the C/O ratio of $kappa$ Andromedae A. We also measure the radial velocity of $kappa$ Andromedae b for the first time, with a value of $-1.4pm0.9,mathrm{km},mathrm{s}^{-1}$ relative to the host star. We find that the derived radial velocity is consistent with the estimated high eccentricity of $kappa$ Andromedae b.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا