ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the electronic structure of a noncentrosymmetric superconductor, BiPd using photoemission spectroscopy with multiple photon energies ranging from ultraviolet to hard x-ray. Experimental data exhibit interesting difference in the surfac e and bulk electronic structures of this system. While the surface Bi core level peaks appear at lower binding energies, the surface valence band features are found at the higher binding energy side of the bulk valence band; valence band is primarily constituted by the Pd 4d states. These changes in the electronic structure cannot be explained by the change in ionicity of the constituent elements via charge transfer. Analysis of the experimental data indicates that the Bi-Pd hybridization physics plays the key role in deriving the anomalous spectral evolution and the electronic properties of this system.
Understanding exotic solids is a difficult task as interactions are often hidden by the symmetry of the system. Here, we study the electronic properties of a noncentrosymmetric solid, BiPd, which is a rare material exhibiting both superconductivity a nd topological phase of matter. Employing high resolution photoemission spectroscopy with photon energies ranging from hard x-ray to extreme ultraviolet regime, we show that hard x-ray spectroscopy alone is not enough to reveal surface-bulk differences in the electronic structure. We derived the escape depths close to the extreme surface sensitivity and find that the photon energies used for high resolution measurements such as ARPES fall in the surface sensitive regime. In addition, we discover deviation of the branching ratio of Bi core level features derived from conventional quantum theories of the core hole final states. Such paradigm shift in core level spectroscopy can be attributed to the absence of center of symmetry and spin-orbit interactions.
Study of Fe based compounds have drawn much attention due to the discovery of superconductivity as well as many other exotic electronic properties. Here, we review some of our works in these materials carried out employing density functional theory a nd angle resolved photoemission spectroscopy. The results presented here indicate that the dimensionality of the underlying electronic structure plays important role in deriving their interesting electronic properties. The nematicity found in most of these materials appears to be related to the magnetic long range order. We argue that the exoticity in the electronic properties are related to the subtlety in competing structural and magnetic instabilities present in these materials.
We investigate the origin of exoticity in Fe-based systems via studying the Fermiology of CaFe2As2 employing Angle Resolved Photoemission spectroscopy (ARPES). While the Fermi surfaces (FSs) at 200 K and 31 K are observed to exhibit two dimensional ( 2D) and three dimensional (3D) topology, respectively, the FSs at intermediate temperatures reveal emergence of the 3D topology at much lower temperature than the structural & magnetic phase transition temperature (170 K, for the sample under scrutiny). This leads to the conclusion that the evolution of FS topology is not directly driven by the structural transition. In addition, we discover the existence in ambient conditions of energy bands related to the collapsed tetragonal (cT) phase. These bands are distinctly resolved in the high-photon energy spectra exhibiting strong Fe 3d character. They gradually move to higher binding energies due to thermal compression with cooling, leading to the emergence of 3D topology in the Fermi surface. These results reveal the so-far hidden existence of a cT phase in ambient conditions, which is argued to lead to quantum fluctuations responsible for the exotic electronic properties in Fe-pnictide superconductors.
Pseudogap phase in superconductors continues to be an outstanding puzzle that differentiates unconventional superconductors from the conventional ones (BCS-superconductors). Employing high resolution photoemission spectroscopy on a highly dense conve ntional superconductor, MgB2, we discover an interesting scenario. While the spectral evolution close to the Fermi energy is commensurate to BCS descriptions as expected, the spectra in the wider energy range reveal emergence of a pseudogap much above the superconducting transition temperature indicating apparent departure from the BCS scenario. The energy scale of the pseudogap is comparable to the energy of E2g phonon mode responsible for superconductivity in MgB2 and the pseudogap can be attributed to the effect of electron-phonon coupling on the electronic structure. These results reveal a scenario of the emergence of the superconducting gap within an electron-phonon coupling induced pseudogap.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا