ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate continuous tuning of the squeezing level generated in a double-ring optical parametric oscillator by externally controlling the coupling condition using electrically controlled integrated microheaters. We accomplish this by utilizing t he avoided crossing exhibited by a pair of coupled silicon nitride microring resonators. We directly detect a change in the squeezing level from 0.5 dB in the undercoupled regime to 2 dB in the overcoupled regime, which corresponds to a change in the generated on-chip squeezing factor from 0.9 dB to 3.9 dB. Such wide tunability in the squeezing level can be harnessed for on-chip quantum enhanced sensing protocols which require an optimal degree of squeezing.
We present the first demonstration of all-optical squeezing in an on-chip monolithically integrated CMOS-compatible platform. Our device consists of a low loss silicon nitride microring optical parametric oscillator (OPO) with a gigahertz cavity line width. We measure 1.7 dB (5 dB corrected for losses) of sub-shot noise quantum correlations between bright twin beams generated in the microring four-wave-mixing OPO pumped above threshold. This experiment demonstrates a compact, robust, and scalable platform for quantum optics and quantum information experiments on-chip.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا