ترغب بنشر مسار تعليمي؟ اضغط هنا

We present 11 candidate late-type companions to nearby stars identified with data from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All-Sky Survey (2MASS). Eight of the candidates are likely to be companions based on their common proper motions with the primaries. The remaining three objects are rejected as companions, one of which is a free-floating T7 dwarf. Spectral types are available for five of the companions, which consist of M2V, M8.5V, L5, T8, and T8. Based on their photometry, the unclassified companions are probably two mid-M dwarfs and one late-M/early-L dwarf. One of the T8 companions, WISE J142320.84+011638.0, has already been reported by Pinfield and coworkers. The other T8 companion, ULAS J095047.28+011734.3, was discovered by Burningham and coworkers through the United Kingdom Infrared Telescope Infrared Deep Sky Survey, but its companionship has not been previously recognized in the literature. The L5 companion, 2MASS J17430860+8526594, is a new member of a class of L dwarfs that exhibit unusually blue near-IR colors. Among the possible mechanisms that have been previously proposed for the peculiar colors of these L dwarfs, low metallicity does not appear to be a viable explanation for 2MASS J17430860+8526594 since our spectrum of the primary suggests that its metallicity is not significantly subsolar.
The Cepheus B (CepB) molecular cloud and a portion of the nearby CepOB3b OB association, one of the most active regions of star formation within 1 kpc, have been observed with the IRAC detector on board the Spitzer Space Telescope. The goals are to s tudy protoplanetary disk evolution and processes of sequential triggered star formation in the region. Out of ~400 pre-main sequence (PMS) stars selected with an earlier Chandra X-ray Observatory observation, 95% are identified with mid-infrared sources and most of these are classified as diskless or disk-bearing stars. The discovery of the additional >200 IR-excess low-mass members gives a combined Chandra+Spitzer PMS sample complete down to 0.5 Mo outside of the cloud, and somewhat above 1 Mo in the cloud. Analyses of the nearly disk-unbiased combined Chandra+Spitzer selected stellar sample give several results. Our major finding is a spatio-temporal gradient of young stars from the hot molecular core towards the primary ionizing O star HD 217086. This strongly supports the radiation driven implosion (RDI) model of triggered star formation in the region. The empirical estimate for the shock velocity of 1 km/s is very similar to theoretical models of RDI in shocked molecular clouds...ABRIDGED... Other results include: 1. agreement of the disk fractions, their mass dependency, and fractions of transition disks with other clusters; 2. confirmation of the youthfulness of the embedded CepB cluster; 3. confirmation of the effect of suppression of time-integrated X-ray emission in disk-bearing versus diskless systems.
Recently, analysis of near-infrared broad-band photometry and Spitzer IRS spectra has led to the identification of a new pre-transitional disk class whose members have an inner optically thick disk separated from an outer optically thick disk by an o ptically thin gap. This is in contrast to the transitional disks which have inner disk holes (i.e. large reductions of small dust from the star out to an outer optically thick wall). In LkCa 15, one of these proposed pre-transitional disks, detailed modeling showed that although the near-infrared fluxes could be understood in terms of optically thick material at the dust sublimation radius, an alternative model of emission from optically thin dust over a wide range of radii could explain the observations as well. To unveil the true nature of LkCa 15s inner disk we obtained a medium-resolution near-infrared spectrum spanning the wavelength range 2-5 microns using SpeX at the NASA Infrared Telescope Facility. We report that the excess near-infrared emission above the photosphere of LkCa 15 is a black-body continuum which can only be due to optically thick material in an inner disk around the star. When this confirmation of a primordial inner disk is combined with earlier observations of an inner edge to LkCa 15s outer disk it reveals a gapped structure. Forming planets emerge as the most likely mechanism for clearing the gap we detect in this evolving disk.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا