ترغب بنشر مسار تعليمي؟ اضغط هنا

Based on the vector angular spectrum method and the stationary phase method and the fact that a circular aperture function can be expanded into a finite sum of complex Gaussian functions, the analytical vectorial structure of a four-petal Gaussian be am (FPGB) diffracted by a circular aperture is derived in the far field. The energy flux distributions and the diffraction effect introduced by the aperture are studied and illustrated graphically. Moreover, the influence of the f-parameter and the truncation parameter on the nonparaxiality is demonstrated in detail. In addition, the analytical formulas obtained in this paper can degenerate into un-apertured case when the truncation parameter tends to infinity. This work is beneficial to strengthen the understanding of vectorial properties of the FPGB diffracted by a circular aperture.
The analytical vectorial structure of non-paraxial four-petal Gaussian beams(FPGBs) in the far field has been studied based on vector angular spectrum method and stationary phase method. In terms of analytical electromagnetic representations of the T E and TM terms, the energy flux distributions of the TE term, the TM term, and the whole beam are derived in the far field, respectively. According to our investigation, the FPGBs can evolve into a number of small petals in the far field. The number of the petals is determined by the order of input beam. The physical pictures of the FPGBs are well illustrated from the vectorial structure, which is beneficial to strengthen the understanding of vectorial properties of the FPGBs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا