ترغب بنشر مسار تعليمي؟ اضغط هنا

101 - Kentaro Kanatani 2009
We study an instability of thin liquid-vapor layers bounded by rigid parallel walls from both below and above. In this system, the interfacial instability is induced by lateral vapor pressure fluctuation, which is in turn attributed to the effect of phase change: evaporation occurs at a hotter portion of the interface and condensation at a colder one. The high vapor pressure pushes the interface downward and the low one pulls it upward. A set of equations describing the temporal evolution of the interface of the liquid-vapor layers is derived. This model neglects the effect of mass loss or gain at the interface and guarantees the mass conservation of the liquid layer. The result of linear stability analysis of the model shows that the presence of the pressure dependence of the local saturation temperature mitigates the growth of long-wave disturbances. The thinner vapor layer enhances the vapor pressure effect. We find the stability criterion, which suggests that only slight temperature gradients are sufficient to overcome the gravitational effect for a water/vapor system. The same holds for the Rayleigh-Taylor unstable case, with a possibility that the vapor pressure effect may be weakened if the accommodation coefficient is below a certain critical value.
Properties of two equations describing the evolution of the probability density function (PDF) of the relative dispersion in turbulent flow are compared by investigating their solutions: the Richardson diffusion equation with the drift term and the s elf-similar telegraph equation derived by Ogasawara and Toh [J. Phys. Soc. Jpn. 75, 083401 (2006)]. The solution of the self-similar telegraph equation vanishes at a finite point, which represents persistent separation of a particle pair, while that of the Richardson equation extends infinitely just after the initial time. Each equation has a similarity solution, which is found to be an asymptotic solution of the initial value problem. The time lag has a dominant effect on the relaxation process into the similarity solution. The approaching time to the similarity solution can be reduced by advancing the time of the similarity solution appropriately. Batchelor scaling, a scaling law relevant to initial separation, is observed only for the telegraph case. For both models, we estimate the Richardson constant, based on their similarity solutions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا