ترغب بنشر مسار تعليمي؟ اضغط هنا

We revisit the Unruh effect to investigate how finite acceleration would affect a scalar condensate. We discuss a negative thermal-like correction associated with acceleration. From the correspondence between thermo-field dynamics and acceleration ef fects we give an explanation for this negative sign. Using this result and solving the gap equation we show that the condensate should increase with larger acceleration.
We derive an electric current density $j_{em}$ in the presence of a magnetic field $B$ and a chiral chemical potential $mu_5$. We show that $j_{em}$ has not only the anomaly-induced term $propto mu_5 B$ (i.e. Chiral Magnetic Effect) but also a non-an omalous correction which comes from interaction effects and expressed in terms of the susceptibility. We find the correction characteristically dependent on the number of quark flavors. The numerically estimated correction turns out to be a minor effect on heavy-ion collisions but can be tested by the lattice QCD simulation.
We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential $mu_5$ which mimics the effect of imbalanced chirality due to QCD instanton and/or sphale ron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of $mu_5$ on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.
We investigate the effect of the electric-charge neutrality in $beta$ equilibrium on the chiral phase transition by solving the chiral and diquark condensates in the two-flavor Nambu--Jona-Lasinio model. We demonstrate that the electric-charge neut rality plays a similar role as the repulsive vector interaction; they both weaken the first-order chiral phase transition in the high-density and low-temperature region. The first-order chiral phase transition is not affected, however, at finite temperatures where the diquark condensate melts. In this way the chiral phase transition could be second-order at intermediate temperatures if the diquark effects overwhelm the chiral dynamics, while the first-order transition may survive at lower and higher temperatures. The number of the critical points appearing on the phase diagram can vary from zero to three, which depends on the relative strength of the chiral and diquark couplings. We systematically study the possibility of the phase structure with multiple QCD critical points and evaluate the Meissner screening mass to confirm that our conclusion is not overturned by chromomagnetic instability.
53 - Kenji Fukushima 2008
We discuss the chiral phase transition of hot and dense quark matter. We illustrate that the first-order phase transition is generally favored at high baryon density and the repulsive vector-vector interaction weakens the first-order phase transition . We use the Nambu--Jona-Lasinio model with the Polyakov loop coupling for concreteness. We locate the QCD critical surface on the quark mass plane for various values of the vector coupling constant. We find that, with increasing quark chemical potential, the first-order region in the quark mass plane could shrink for sufficiently large vector coupling. This may be a possible explanation for the recent lattice QCD results by de Forcrand and Philipsen.
We estimate the energy density and the gluon distribution associated with the classical fields describing the early-time dynamics of the heavy-ion collisions. We first decompose the energy density into the momentum components exactly in the McLerran- Venugopalan model, with the use of the Wilson line correlators. Then we evolve the energy density with the free-field equation, which is justified by the dominance of the ultraviolet modes near the collision point. We also discuss the improvement with inclusion of nonlinear terms into the time evolution. Our numerical results at RHIC energy are fairly consistent with the empirical values.
We derive an analytical expression for the two-gluon production in the pA (light-heavy) collisions, and focus specifically on the rapidity dependent part. We approximate the gauge field from the heavy target as the Color Glass Condensate which intera cts with the light projectile whose source density allows for a perturbative expansion. We discuss the longitudinal correlations of produced particles. Our calculation goes in part beyond the eikonal limit for the emitted gluons so that we can retain the exponential terms with respect to the rapidity difference. Our expression can thus describe the short-range correlations as well as the long-range ones for which our formula is reduced to the known expression. In a special case of two high-pt gluons in the back-to-back kinematics we find that dependence on the rapidity separation is only moderate even in the diagrammatically connected part.
Topological charge changing transitions can induce chirality in the quark-gluon plasma by the axial anomaly. We study the equilibrium response of the quark-gluon plasma in such a situation to an external magnetic field. To mimic the effect of the top ological charge changing transitions we will introduce a chiral chemical potential. We will show that an electromagnetic current is generated along the magnetic field. This is the Chiral Magnetic Effect. We compute the magnitude of this current as a function of magnetic field, chirality, temperature, and baryon chemical potential.
80 - Kenji Fukushima 2008
We present extensive studies on hot and dense quark matter with two light and one heavy flavors in the Nambu--Jona-Lasinio model with the Polyakov loop (so-called PNJL model). First we discuss prescription dependence in choosing the Polyakov loop eff ective potential and propose a simple and rather sensible ansatz. We look over quantitative comparison to the lattice measurement to confirm that the model captures thermodynamic properties correctly. We then analyze the phase structure with changing the temperature, quark chemical potential, quark masses, and coupling constants. We particularly investigate how the effective U_A(1) restoration and the induced vector-channel interaction at finite density would affect the QCD critical point.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا