ترغب بنشر مسار تعليمي؟ اضغط هنا

Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally-efficient continuum solvation methodologies. We develop a model for the double lay er of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the Potential of Zero Charge (PZC), and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the Nonlinear Electrochemical Soft-Sphere solvation model (NESS) which both captures the capacitance features observed experimentally, and serves as a general-purpose continuum solvation model.
Quantum-chemical processes in liquid environments impact broad areas of science, from molecular biology to geology to electrochemistry. While density-functional theory (DFT) has enabled efficient quantum-mechanical calculations which profoundly impac t understanding of atomic-scale phenomena, realistic description of the liquid remains a challenge. Here, we present an approach based on joint density-functional theory (JDFT) which addresses this challenge by leveraging the DFT approach not only for the quantum mechanics of the electrons in a solute, but also simultaneously for the statistical mechanics of the molecules in a surrounding equilibrium liquid solvent. Specifically, we develop a new universal description for the interaction of electrons with an arbitrary liquid, providing the missing link to finally transform JDFT into a practical tool for the realistic description of chemical processes in solution. This approach predicts accurate solvation free energies and surrounding atomic-scale liquid structure for molecules and surfaces in multiple solvents without refitting, all at a fraction of the computational cost of methods of comparable detail and accuracy. To demonstrate the potential impact of this method, we determine the structure of the solid/liquid interface, offering compelling agreement with more accurate (but much more computationally intensive) theories and with X-ray reflectivity measurements.
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of n ew classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs. This code hosts the development of joint density-functional theory (JDFT) that combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.
Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code VASP. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the S$_{text{N}} 2$ reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the S$_{text{N}} 2$ reaction.
This work explores the use of joint density-functional theory, a new form of density-functional theory for the ab initio description of electronic systems in thermodynamic equilibrium with a liquid environment, to describe electrochemical systems. Af ter reviewing the physics of the underlying fundamental electrochemical concepts, we identify the mapping between commonly measured electrochemical observables and microscopically computable quantities within an, in principle, exact theoretical framework. We then introduce a simple, computationally efficient approximate functional which we find to be quite successful in capturing a priori basic electrochemical phenomena, including the capacitive Stern and diffusive Gouy-Chapman regions in the electrochemical double layer, quantitative values for interfacial capacitance, and electrochemical potentials of zero charge for a series of metals. We explore surface charging with applied potential and are able to place our ab initio results directly on the scale associated with the Standard Hydrogen Electrode (SHE). Finally, we provide explicit details for implementation within standard density-functional theory software packages at negligible computational cost over standard calculations carried out within vacuum environments.
We present an accurate equation of state for water based on a simple microscopic Hamiltonian, with only four parameters that are well-constrained by bulk experimental data. With one additional parameter for the range of interaction, this model yields a computationally efficient free-energy functional for inhomogeneous water which captures short-ranged correlations, cavitation energies and, with suitable long-range corrections, the non-linear dielectric response of water, making it an excellent candidate for studies of mesoscale water and for use in ab initio solvation methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا