ترغب بنشر مسار تعليمي؟ اضغط هنا

As a technology to read brain states from measurable brain activities, brain decoding are widely applied in industries and medical sciences. In spite of high demands in these applications for a universal decoder that can be applied to all individuals simultaneously, large variation in brain activities across individuals has limited the scope of many studies to the development of individual-specific decoders. In this study, we used deep neural network (DNN), a nonlinear hierarchical model, to construct a subject-transfer decoder. Our decoder is the first successful DNN-based subject-transfer decoder. When applied to a large-scale functional magnetic resonance imaging (fMRI) database, our DNN-based decoder achieved higher decoding accuracy than other baseline methods, including support vector machine (SVM). In order to analyze the knowledge acquired by this decoder, we applied principal sensitivity analysis (PSA) to the decoder and visualized the discriminative features that are common to all subjects in the dataset. Our PSA successfully visualized the subject-independent features contributing to the subject-transferability of the trained decoder.
We present a novel algorithm (Principal Sensitivity Analysis; PSA) to analyze the knowledge of the classifier obtained from supervised machine learning techniques. In particular, we define principal sensitivity map (PSM) as the direction on the input space to which the trained classifier is most sensitive, and use analogously defined k-th PSM to define a basis for the input space. We train neural networks with artificial data and real data, and apply the algorithm to the obtained supervised classifiers. We then visualize the PSMs to demonstrate the PSAs ability to decompose the knowledge acquired by the trained classifiers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا