ترغب بنشر مسار تعليمي؟ اضغط هنا

We used the Extended Submillimeter Array (eSMA) in its most extended configuration to investigate the innermost (within a radius of 290 R* from the star) circumstellar envelope (CSE) of IRC+10216. We imaged the CSE using HCN and other molecular lines with a beam size of 0.22 x 0.46, deeply into the very inner edge (15 R*) of the envelope where the expansion velocity is only 3 km/s. The excitation mechanism of hot HCN and KCl maser lines is discussed. HCN maser components are spatially resolved for the first time on an astronomical object. We identified two discrete regions in the envelope: a region with a radius of . 15 R*, where molecular species have just formed and the gas has begun to be accelerated (region I) and a shell region (region II) with a radius of 23 R* and a thickness of 15 R*, whose expansion velocity has reached up to 13 km/s, nearly the terminal velocity of 15 km/s. The Si$^{34}$S line detected in region I shows a large expansion velocity of 16 km/s due to strong wing components, indicating that the emission may arise from a shock region in the innermost envelope. In region II, the P.A. of the most copious mass loss direction was found to be 120 +/- 10 degrees, which may correspond to the equatorial direction of the star. Region II contains a torus-like feature. These two regions may have emerged due to significant differences in the size distributions of the dust particles in the two regions.
Using the Submillimeter Array we have detected the J=3-2 and 2-1 rotational transitions from within the first vibrationally excited state of CO toward the extreme carbon star IRC+10216 (CW Leo). The emission remains spatially unresolved with an angul ar resolution of ~2 and, given that the lines originate from energy levels that are ~3100 K above the ground state, almost certainly originates from a much smaller (~10^{14} cm) sized region close to the stellar photosphere. Thermal excitation of the lines requires a gas density of ~10^{9} cm^{-3}, about an order of magnitude higher than the expected gas density based previous infrared observations and models of the inner dust shell of IRC+10216.
65 - Nimesh A. Patel 2008
A spectral-line survey of IRC+10216 in the 345 GHz band has been undertaken with the Submillimeter Array. Although not yet completed, it has already yielded a fairly large sample of narrow molecular emission lines with line-widths indicating expansio n velocities of ~4 km/s, less than 3 times the well-known value of the terminal expansion velocity (14.5 km/s) of the outer envelope. Five of these narrow lines have now been identified as rotational transitions in vibrationally excited states of previously detected molecules: the v=1, J=17--16 and J=19--18 lines of Si34S and 29SiS and the v=2, J=7--6 line of CS. Maps of these lines show that the emission is confined to a region within ~60 AU of the star, indicating that the narrow-line emission is probing the region of dust-formation where the stellar wind is still being accelerated.
The eSMA (extended SMA) combines the SMA, JCMT and CSO into a single facility, providing enhanced sensitivity and spatial resolution owing to the increased collecting area at the longest baselines. Until ALMA early science observing (2011), the eSMA will be the facility capable of the highest angular resolution observations at 345 GHz. The gain in sensitivity and resolution will bring new insights in a variety of fields, such as protoplanetary/transition disks, high-mass star formation, solar system bodies, nearby and high-z galaxies. Therefore the eSMA is an important facility to prepare the grounds for ALMA and train scientists in the techniques. Over the last two years, and especially since November 2006, there has been substantial progress toward making the eSMA into a working interferometer. In particular, (i) new 345-GHz receivers, that match the capabilities of the SMA system, were installed at the JCMT and CSO; (ii) numerous tests have been performed for receiver, correlator and baseline calibrations in order to determine and take into account the effects arising from the differences between the three types of antennas; (iii) first fringes at 345 GHz were obtained on August 30 2007, and the array has entered the science-verification stage. We report on the characteristics of the eSMA and its measured performance at 230 GHz and that expected at 345 GHz. We also present the results of the commissioning and some initial science-verification observations, including the first absorption measurement of the C/CO ratio in a galaxy at z=0.89, located along the line of sight to the lensed quasar PKS1830-211, and on the imaging of the vibrationally excited HCN line towards IRC+10216.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا