ترغب بنشر مسار تعليمي؟ اضغط هنا

We simplify the construction of projection complexes due to Bestvina-Bromberg-Fujiwara. To do so, we introduce a sharper version of the Behrstock inequality, and show that it can always be enforced. Furthermore, we use the new setup to prove acylindr icity results for the action on the projection complexes. We also treat quasi-trees of metric spaces associated to projection complexes, and prove an acylindricity criterion in that context as well.
Let $Gamma$ be a finite index subgroup of the mapping class group $MCG(Sigma)$ of a closed orientable surface $Sigma$, possibly with punctures. We give a precise condition (in terms of the Nielsen-Thurston decomposition) when an element $ginGamma$ ha s positive stable commutator length. In addition, we show that in these situations the stable commutator length, if nonzero, is uniformly bounded away from 0. The method works for certain subgroups of infinite index as well and we show $scl$ is uniformly positive on the nontrivial elements of the Torelli group. The proofs use our earlier construction in the paper Constructing group actions on quasi-trees and applications to mapping class groups of group actions on quasi-trees.
We show that for acylindrically hyperbolic groups $Gamma$ (with no nontrivial finite normal subgroups) and arbitrary unitary representation $rho$ of $Gamma$ in a (nonzero) uniformly convex Banach space the vector space $H^2_b(Gamma;rho)$ is infinite dimensional. The result was known for the regular representations on $ell^p(Gamma)$ with $1<p<infty$ by a different argument. But our result is new even for a non-abelian free group in this great generality for representations, and also the case for acylindrically hyperbolic groups follows as an application.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا