ترغب بنشر مسار تعليمي؟ اضغط هنا

LIGO, the Laser Interferometer Gravitational-wave Observatory, has been designed and constructed to measure gravitational wave strain via differential arm length. The LIGO 4-km Michelson arms with Fabry-Perot cavities have auxiliary length control se rvos for suppressing Michelson motion of the beam-splitter and arm cavity input mirrors, which degrades interferometer sensitivity. We demonstrate how a post-facto pipeline (AMPS) improves a data sample from LIGO Science Run 6 with feedforward subtraction. Dividing data into 1024-second windows, we numerically fit filter functions representing the frequency-domain transfer functions from Michelson length channels into the gravitational-wave strain data channel for each window, then subtract the filtered Michelson channel noise (witness) from the strain channel (target). In this paper we describe the algorithm, assess achievable improvements in sensitivity to astrophysical sources, and consider relevance to future interferometry.
102 - Keith Riles 2012
The LIGO Scientific Collaboration and Virgo Collaboration have carried out joint searches in LIGO and Virgo data for periodic continuous gravitational waves. These analyses range from targeted searches for gravitational-wave signals from known pulsar s, for which precise ephemerides from radio or X-ray observations are used in matched filters, to all-sky searches for unknown neutron stars, including stars in binary systems. Between these extremes lie directed searches for known stars of unknown spin frequency or for new unknown sources at specific locations, such as near the galactic center or in globular clusters. Recent and ongoing searches of each type will be summarized, along with prospects for future searches using data from the Advanced LIGO and Virgo detectors.
34 - Keith Riles 2012
Gravitational wave science should transform in this decade from a study of what has not been seen to a full-fledged field of astronomy in which detected signals reveal the nature of cataclysmic events and exotic objects. The LIGO Scientific Collabora tion and Virgo Collaboration have recently completed joint data runs of unprecedented sensitivities to gravitational waves. So far, no gravitational radiation has been seen (although data mining continues). It seems likely that the first detection will come from 2nd-generation LIGO and Virgo interferometers now being installed. These new detectors are expected to detect ~40 coalescences of neutron star binary systems per year at full sensitivity. At the same time, research and development continues on 3rd-generation underground interferometers and on space-based interferometers. In parallel there is a vigorous effort in the radio pulsar community to detect ~several-nHz gravitational waves via the timing residuals from an array of pulsars at different locations in the sky. As the dawn of gravitational wave astronomy nears, this review, intended primarily for interested particle and nuclear physicists, describes what we have learned to date and the prospects for direct discovery of gravitational waves.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا