ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters selected from the CLASH survey. Our analysis combines constraints from 16-band HST observations and wide-field multi-color imaging taken primarily with Subaru/Suprime-Cam. We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all clusters. We find internal consistency of the ensemble mass calibration to be $le 5% pm 6%$ by comparison with the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample, we examine the concentration-mass relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $c|_{z=0.34} = 3.95 pm 0.35$ at $M_{200c} simeq 14times 10^{14}M_odot$ and an intrinsic scatter of $sigma(ln c_{200c}) = 0.13 pm 0.06$, in excellent agreement with LCDM predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos, namely, the NFW, Einasto, and DARKexp models, whereas the single power-law, cored isothermal and Burkert density profiles are disfavored by the data. We show that cuspy halo models that include the two-halo term provide improved agreement with the data. For the NFW halo model, we measure a mean concentration of $c_{200c} = 3.79^{+0.30}_{-0.28}$ at $M_{200c} = 14.1^{+1.0}_{-1.0}times 10^{14}M_odot$, demonstrating consistency between complementary analysis methods.
We present a weak-lensing analysis of the merging {em Frontier Fields} (FF) cluster Abell~2744 using new Subaru/Suprime-Cam imaging. The wide-field lensing mass distribution reveals this cluster is comprised of four distinct substructures. Simultaneo usly modeling the two-dimensional reduced shear field using a combination of a Navarro--Frenk--White (NFW) model for the main core and truncated NFW models for the subhalos, we determine their masses and locations. The total mass of the system is constrained as $M_mathrm{200c} = (2.06pm0.42)times10^{15},M_odot$. The most massive clump is the southern component with $M_mathrm{200c} = (7.7pm3.4)times10^{14},M_odot$, followed by the western substructure ($M_mathrm{200c} = (4.5pm2.0)times10^{14},M_odot$) and two smaller substructures to the northeast ($M_mathrm{200c} = (2.8pm1.6)times10^{14},M_odot$) and northwest ($M_mathrm{200c} = (1.9pm1.2)times10^{14},M_odot$). The presence of the four substructures supports the picture of multiple mergers. Using a composite of hydrodynamical binary simulations we explain this complicated system without the need for a slingshot effect to produce the northwest X-ray interloper, as previously proposed. The locations of the substructures appear to be offset from both the gas ($87^{+34}_{-28}$ arcsec, 90% CL) and the galaxies ($72^{+34}_{-53}$ arcsec, 90% CL) in the case of the northwestern and western subhalos. To confirm or refute these findings, high resolution space-based observations extending beyond the current FF limited coverage to the west and northwestern area are essential.
437 - Keiichi Umetsu 2015
We perform a 3D multi-probe analysis of the rich galaxy cluster A1689 by combining improved weak-lensing data from new BVRiz Subaru/Suprime-Cam observations with strong-lensing, X-ray, and Sunyaev-Zeldovich effect (SZE) data sets. We reconstruct the projected matter distribution from a joint weak-lensing analysis of 2D shear and azimuthally integrated magnification constraints, the combination of which allows us to break the mass-sheet degeneracy. The resulting mass distribution reveals elongation with axis ratio ~0.7 in projection. When assuming a spherical halo, our full weak-lensing analysis yields a projected concentration of $c_{200c}^{2D}=8.9pm 1.1$ ($c_{vir}^{2D}sim 11$), consistent with and improved from earlier weak-lensing work. We find excellent consistency between weak and strong lensing in the region of overlap. In a parametric triaxial framework, we constrain the intrinsic structure and geometry of the matter and gas distributions, by combining weak/strong lensing and X-ray/SZE data with minimal geometric assumptions. We show that the data favor a triaxial geometry with minor-major axis ratio 0.39+/-0.15 and major axis closely aligned with the line of sight (22+/-10 deg). We obtain $M_{200c}=(1.2pm 0.2)times 10^{15} M_{odot}/h$ and $c_{200c}=8.4pm 1.3$, which overlaps with the $>1sigma$ tail of the predicted distribution. The shape of the gas is rounder than the underlying matter but quite elongated with minor-major axis ratio 0.60+/-0.14. The gas mass fraction within 0.9Mpc is 10^{+3}_{-2}%. The thermal gas pressure contributes to ~60% of the equilibrium pressure, indicating a significant level of non-thermal pressure support. When compared to Plancks hydrostatic mass estimate, our lensing measurements yield a spherical mass ratio of $M_{Planck}/M_{GL}=0.70pm 0.15$ and $0.58pm 0.10$ with and without corrections for lensing projection effects, respectively.
We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19<z<0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wid e-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ~25 in the radial range of 200 to 3500kpc/h. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of $c_{200c}=4.01^{+0.35}_{-0.32}$ at $M_{200c}=1.34^{+0.10}_{-0.09} 10^{15}M_{odot}$. We show this is in excellent agreement with Lambda cold-dark-matter (LCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is $alpha_E=0.191^{+0.071}_{-0.068}$, which is consistent with the NFW-equivalent Einasto parameter of $sim 0.18$. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data, and measure cluster masses at several characteristic radii. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the LCDM model.
The galaxy cluster MACS J0717.5+3745 (z=0.55) is the largest known cosmic lens, with complex internal structures seen in deep X-ray, Sunyaev-Zeldovich effect and dynamical observations. We perform a combined weak and strong lensing analysis with wide -field BVRiz Subaru/Suprime-Cam observations and 16-band Hubble Space Telescope observations taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH). We find consistent weak distortion and magnification measurements of background galaxies, and combine these signals to construct an optimally estimated radial mass profile of the cluster and its surrounding large-scale structure out to 5 Mpc/h. We find consistency between strong-lensing and weak-lensing in the region where these independent data overlap, <500 kpc/h. The two-dimensional weak-lensing map reveals a clear filamentary structure traced by distinct mass halos. We model the lensing shear field with 9 halos, including the main cluster, corresponding to mass peaks detected above 2.5sigma_kappa. The total mass of the cluster as determined by the different methods is M_{vir}=(2.8pm0.4) times 10^15 M_sun. Although this is the most massive cluster known at z>0.5, in terms of extreme value statistics we conclude that the mass of MACS J0717.5+3745 by itself is not in serious tension with LambdaCDM, representing only a ~2{sigma} departure above the maximum simulated halo mass at this redshift.
We report the first detection of a redshift-depth enhancement of background galaxies magnified by foreground clusters. Using 300,000 BOSS-Survey galaxies with accurate spectroscopic redshifts, we measure their mean redshift depth behind four large sa mples of optically selected clusters from the SDSS surveys, totalling 5,000-15,000 clusters. A clear trend of increasing mean redshift towards the cluster centers is found, averaged over each of the four cluster samples. In addition we find similar but noisier behaviour for an independent X-ray sample of 158 clusters lying in the foreground of the current BOSS sky area. By adopting the mass-richness relationships appropriate for each survey we compare our results with theoretical predictions for each of the four SDSS cluster catalogs. The radial form of this redshift enhancement is well fitted by a richness-to-mass weighted composite Navarro-Frenk-White profile with an effective mass ranging between M_200 ~ 1.4-1.8 10^14 M_sun for the optically detected cluster samples, and M_200 ~ 5.0 10^14 M_sun for the X-ray sample. This lensing detection helps to establish the credibility of these SDSS cluster surveys, and provides a normalization for their respective mass-richness relations. In the context of the upcoming bigBOSS, Subaru-PFS, and EUCLID-NISP spectroscopic surveys, this method represents an independent means of deriving the masses of cluster samples for examining the cosmological evolution, and provides a relatively clean consistency check of weak-lensing measurements, free from the systematic limitations of shear calibration.
We derive an accurate mass distribution of the galaxy cluster MACS J1206.2-0847 (z=0.439) from a combined weak-lensing distortion, magnification, and strong-lensing analysis of wide-field Subaru BVRIz imaging and our recent 16-band Hubble Space Teles cope observations taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program. We find good agreement in the regions of overlap between several weak and strong lensing mass reconstructions using a wide variety of modeling methods, ensuring consistency. The Subaru data reveal the presence of a surrounding large scale structure with the major axis running approximately north-west south-east (NW-SE), aligned with the cluster and its brightest galaxy shapes, showing elongation with a sim 2:1 axis ratio in the plane of the sky. Our full-lensing mass profile exhibits a shallow profile slope dlnSigma/dlnRsim -1 at cluster outskirts (R>1Mpc/h), whereas the mass distribution excluding the NW-SE excess regions steepens further out, well described by the Navarro-Frenk-White form. Assuming a spherical halo, we obtain a virial mass M_{vir}=(1.1pm 0.2pm 0.1)times 10^{15} M_{sun}/h and a halo concentration c_{vir} = 6.9pm 1.0pm 1.2 (sim 5.7 when the central 50kpc/h is excluded), which falls in the range 4< <c> <7 of average c(M,z) predictions for relaxed clusters from recent Lambda cold dark matter simulations. Our full lensing results are found to be in agreement with X-ray mass measurements where the data overlap, and when combined with Chandra gas mass measurements, yield a cumulative gas mass fraction of 13.7^{+4.5}_{-3.0}% at 0.7Mpc/h (approx 1.7r_{2500}), a typical value observed for high mass clusters.
We precisely constrain the inner mass profile of Abell 2261 (z=0.225) for the first time and determine this cluster is not over-concentrated as found previously, implying a formation time in agreement with {Lambda}CDM expectations. These results are based on strong lensing analyses of new 16-band HST imaging obtained as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). Combining this with revised weak lensing analyses of Subaru wide field imaging with 5-band Subaru + KPNO photometry, we place tight new constraints on the halo virial mass M_vir = 2.2pm0.2times10^15 Modot/h70 (within r approx 3 Mpc/h70) and concentration c = 6.2 pm 0.3 when assuming a spherical halo. This agrees broadly with average c(M,z) predictions from recent {Lambda}CDM simulations which span 5 <~ <c> <~ 8. Our most significant systematic uncertainty is halo elongation along the line of sight. To estimate this, we also derive a mass profile based on archival Chandra X-ray observations and find it to be ~35% lower than our lensing-derived profile at r2500 ~ 600 kpc. Agreement can be achieved by a halo elongated with a ~2:1 axis ratio along our line of sight. For this elongated halo model, we find M_vir = 1.7pm0.2times10^15 Modot/h70 and c_vir = 4.6pm0.2, placing rough lower limits on these values. The need for halo elongation can be partially obviated by non-thermal pressure support and, perhaps entirely, by systematic errors in the X-ray mass measurements. We estimate the effect of background structures based on MMT/Hectospec spectroscopic redshifts and find these tend to lower Mvir further by ~7% and increase cvir by ~5%.
55 - Keiichi Umetsu 2011
We outline our methods for obtaining high precision mass profiles, combining independent weak-lensing distortion, magnification, and strong-lensing measurements. For massive clusters the strong and weak lensing regimes contribute equal logarithmic co verage of the radial profile. The utility of high-quality data is limited by the cosmic noise from large scale structure along the line of sight. This noise is overcome when stacking clusters, as too are the effects of cluster asphericity and substructure, permitting a stringent test of theoretical models. We derive a mean radial mass profile of four similar mass clusters of high-quality HST and Subaru images, in the range R=40kpc/h to 2800kpc/h, where the inner radial boundary is sufficiently large to avoid smoothing from miscentering effects. The stacked mass profile is detected at 58-sigma significance over the entire radial range, with the contribution from the cosmic noise included. We show that the projected mass profile has a continuously steepening gradient out to beyond the virial radius, in remarkably good agreement with the standard Navarro-Frenk-White form predicted for the family of CDM-dominated halos in gravitational equilibrium. The central slope is constrained to lie in the range, -dln{rho}/dln{r}=0.89^{+0.27}_{-0.39}. The mean concentration is c_{vir}=7.68^{+0.42}_{-0.40} (at a mean virial mass 1.54^{+0.11}_{-0.10}times 10^{15} M_{sun}/h), which is high for relaxed, high-mass clusters, but consistent with LCDM when a sizable projection bias estimated from N-body simulations is considered. This possible tension will be more definitively explored with new cluster surveys, such as CLASH, LoCuSS, Subaru HSC, and XXM-XXL, to construct the c-M relation over a wider mass range.
Clusters of galaxies have been used extensively to determine cosmological parameters. A major difficulty in making best use of Sunyaev-Zeldovich (SZ) and X-ray observations of clusters for cosmology is that using X-ray observations it is difficult to measure the temperature distribution and therefore determine the density distribution in individual clusters of galaxies out to the virial radius. Observations with the new generation of SZ instruments are a promising alternative approach. We use clusters of galaxies drawn from high-resolution adaptive mesh refinement (AMR) cosmological simulations to study how well we should be able to constrain the large-scale distribution of the intra-cluster gas (ICG) in individual massive relaxed clusters using AMiBA in its configuration with 13 1.2-m diameter dishes (AMiBA13) along with X-ray observations. We show that non-isothermal beta models provide a good description of the ICG in our simulated relaxed clusters. We use simulated X-ray observations to estimate the quality of constraints on the distribution of gas density, and simulated SZ visibilities (AMiBA13 observations) for constraints on the large-scale temperature distribution of the ICG. We find that AMiBA13 visibilities should constrain the scale radius of the temperature distribution to about 50% accuracy. We conclude that the upgraded AMiBA, AMiBA13, should be a powerful instrument to constrain the large-scale distribution of the ICG.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا