ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuing work initiated in earlier publications [Ichita, Yamada and Asada, Phys. Rev. D {bf 83}, 084026 (2011); Yamada and Asada, Phys. Rev. D {bf 86}, 124029 (2012)], we examine the post-Newtonian (PN) effects on the stability of the triangular so lution in the relativistic three-body problem for general masses. For three finite masses, a condition for stability of the triangular solution is obtained at the first post-Newtonian (1PN) order, and it recovers previous results for the PN restricted three-body problem when one mass goes to zero. The stability regions still exist even at the 1PN order, though the PN triangular configuration for general masses is less stable than the PN restricted three-body case as well as the Newtonian one.
A moment approach for orbit determinations of astrometric binaries from astrometric observations alone has been recently studied for a low signal-to-noise ratio (Iwama et al. 2013, PASJ, 65, 2). With avoiding a direct use of the time-consuming Kepler equation, temporal information is taken into account to increase the accuracy of statistical moments. As numerical tests, 100 realizations are done and the mean and the standard deviation are also evaluated. For a semi-major axis, the difference between the mean of the recovered values and the true value decreases to less than a tenth in the case of $10000$ observed points. Therefore, the present moment approach works better than the previous one for the orbit determinations when one has a number of the observed points. The present approach is thus applicable to Cyg X-1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا