ترغب بنشر مسار تعليمي؟ اضغط هنا

Using predictions from three-dimensional (3D) hydrodynamics simulations of core-collapse supernovae (CCSNe), we present a coherent network analysis to detection, reconstruction, and the source localization of the gravitational-wave (GW) signals. We u se the {tt RIDGE} pipeline for the analysis, in which the network of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA is considered. By combining with a GW spectrogram analysis, we show that several important hydrodynamics features in the original waveforms persist in the waveforms of the reconstructed signals. The characteristic excess in the spectrograms originates not only from rotating core-collapse, bounce and the subsequent ring down of the proto-neutron star (PNS) as previously identified, but also from the formation of magnetohydrodynamics jets and non-axisymmetric instabilities in the vicinity of the PNS. Regarding the GW signals emitted near at the rotating core bounce, the horizon distance extends up to $sim$ 18 kpc for the most rapidly rotating 3D model in this work. Following the rotating core bounce, the dominant source of the GW emission shifts to the non-axisymmetric instabilities. The horizon distances extend maximally up to $sim$ 40 kpc seen from the spin axis. With an increasing number of 3D models trending towards explosion recently, our results suggest that in addition to the best studied GW signals due to rotating core-collapse and bounce, the time is ripe to consider how we can do science from GWs of CCSNe much more seriously than before. Particularly the quasi-periodic signals due to the non-axisymmetric instabilities and the detectability should deserve further investigation to elucidate the inner-working of the rapidly rotating CCSNe.
Bearing in mind the application to high-magnetic-field (high-B) radio pulsars, we investigate two-dimensional (2D) thermal evolutions of neutron stars (NSs). We pay particular attention to the influence of different equilibrium configurations on the surface temperature distributions. The equilibrium configurations are constructed in a systematic manner, in which both toroidal and poloidal magnetic fields are determined self-consistently with the inclusion of general relativistic effects. To solve the 2D heat transfer inside the NS interior out to the crust, we have developed an implicit code based on a finite-difference scheme that deals with anisotropic thermal conductivity and relevant cooling processes in the context of a standard cooling scenario. In agreement with previous studies, the surface temperatures near the pole become higher than those in the vicinity of the equator as a result of anisotropic heat transfer. Our results show that the ratio of the highest to the lowest surface temperatures changes maximally by one order of magnitude, depending on the equilibrium configurations. Despite such difference, we find that the area of such hot and cold spots is so small that the simulated X-ray spectrum could be well reproduced by a single temperature blackbody fitting.
Significant progress has been made in the development of an international network of gravitational wave detectors, such as TAMA300, LIGO, VIRGO, and GEO600. For these detectors, one of the most promising sources of gravitational waves are core collap se supernovae especially in our Galaxy. Recent simulations of core collapse supernovae, rigorously carried out by various groups, show that the features of the waveforms are determined by the rotational profiles of the core, such as the rotation rate and the degree of the differential rotation prior to core-collapse. Specifically, it has been predicted that the sign of the second largest peak in the gravitational wave strain signal is negative if the core rotates cylindrically with strong differential rotation. The sign of the second peak could be a nice indicator that provides us with information about the angular momentum distribution of the core, unseen without gravitational wave signals. Here we present a data analysis procedure aiming at the detection of the second peak using a coherent network analysis and estimate the detection efficiency when a supernova is at the sky location of the Galactic center. The simulations showed we were able to determine the sign of the second peak under an idealized condition of a network of gravitational wave detectors if a supernova occurs at the Galactic center.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا