ترغب بنشر مسار تعليمي؟ اضغط هنا

108 - Can-Li Song , Lili Wang , Ke He 2015
Scanning tunneling microscopy and spectroscopy have been used to investigate the femtosecond dynamics of Dirac fermions in the topological insulator Bi$_2$Se$_3$ ultrathin films. At two-dimensional limit, bulk electrons becomes quantized and the quan tization can be controlled by film thickness at single quintuple layer level. By studying the spatial decay of standing waves (quasiparticle interference patterns) off steps, we measure directly the energy and film thickness dependence of phase relaxation length $l_{phi}$ and inelastic scattering lifetime $tau$ of topological surface-state electrons. We find that $tau$ exhibits a remarkable $(E-E_F)^{-2}$ energy dependence and increases with film thickness. We show that the features revealed are typical for electron-electron scattering between surface and bulk states.
229 - Cui-Zu Chang , Ke He , Min-Hao Liu 2010
Insulating substrates are crucial for electrical transport study and room temperature application of topological insulator films at thickness of only several nanometers. High quality quantum well films of Bi2Se3, a typical three-dimensional topologic al insulator, have been grown on alpha-Al2O3 (sapphire) (0001) by molecular beam epitaxy. The films exhibit well-defined quantum well states and surface states, suggesting the uniform thickness over macroscopic area. The Bi2Se3 thin films on sapphire (0001) provide a good system to study low-dimensional physics of topological insulators since conduction contribution from the substrate is negligibly small.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا