ترغب بنشر مسار تعليمي؟ اضغط هنا

Using a covariant spectator quark model we estimate valence quark contributions to the F1*(Q2) and F2*(Q2) transition form factors for the gamma N -> P11(1440) reaction. The Roper resonance, P11(1440), is assumed to be the first radial excitation of the nucleon. The present model requires no extra parameters except for those already fixed by the previous studies for the nucleon. Our results are consistent with the experimental data in the high Q2 region, and those from lattice QCD. We also estimate the meson cloud contributions, focusing on the low Q2 region, where they are expected to be dominant.
The most recent development of the quark-meson coupling (QMC) model, in which the effect of the mean scalar field in-medium on the hyperfine interaction is also included self-consistently, is used to compute the properties of finite hypernuclei. The calculations for $Lambda$ and $Xi$ hypernuclei are of comparable quality to earlier QMC results without the additional parameter needed there. Even more significantly, the additional repulsion associated with the increased hyperfine interaction in-medium completely changes the predictions for $Sigma$ hypernuclei. Whereas in the earlier work they were bound by an amount similar to $Lambda$ hypernuclei, here they are unbound, in qualitative agreement with the experimental absence of such states. The equivalent non-relativistic potential felt by the $Sigma$ is repulsive inside the nuclear interior and weakly attractive in the nuclear surface, as suggested by the analysis of $Sigma$-atoms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا