ترغب بنشر مسار تعليمي؟ اضغط هنا

Donoho and Stark have shown that a precise deterministic recovery of missing information contained in a time interval shorter than the time-frequency uncertainty limit is possible. We analyze this signal recovery mechanism from a physics point of vie w and show that the well-known Shannon-Nyquist sampling theorem, which is fundamental in signal processing, also uses essentially the same mechanism. The uncertainty relation in the context of information theory, which is based on Fourier analysis, provides a criterion to distinguish Shannon-Nyquist sampling from compressed sensing. A new signal recovery formula, which is analogous to Donoho-Stark formula, is given using the idea of Shannon-Nyquist sampling; in this formulation, the smearing of information below the uncertainty limit as well as the recovery of information with specified bandwidth take place. We also discuss the recovery of states from the domain below the uncertainty limit of coordinate and momentum in quantum mechanics and show that in principle the state recovery works by assuming ideal measurement procedures. The recovery of the lost information in the sub-uncertainty domain means that the loss of information in such a small domain is not fatal, which is in accord with our common understanding of the uncertainty principle, although its precise recovery is something we are not used to in quantum mechanics. The uncertainty principle provides a universal sampling criterion covering both the classical Shannon-Nyquist sampling theorem and the quantum mechanical measurement.
We establish a quantitative relation between Hardys paradox and the breaking of uncertainty principle in the sense of measurement-disturbance relations in the conditional measurement of non-commuting operators. The analysis of the inconsistency of lo cal realism with entanglement by Hardy is simplified if this breaking of measurement-disturbance relations is taken into account, and a much simplified experimental test of local realism is illustrated in the framework of Hardys thought experiment. The essence of Hardys model is identified as a combination of two conditional measurements, which give rise to definite eigenvalues to two non-commuting operators simultaneously in hidden-variables models. Better understanding of the intimate interplay of entanglement and measurement-disturbance is crucial in the current discussions of Hardys paradox using the idea of weak measurement, which is based on a general analysis of measurement-disturbance relations.
Heisenbergs uncertainty principle is quantified by error-disturbance tradeoff relations, which have been tested experimentally in various scenarios. Here we shall report improved n
The geometric (Berry) phase of a two-level system in a dissipative environment is analyzed by using the second-quantized formulation, which provides a unified and gauge-invariant treatment of adiabatic and nonadiabatic phases and is thus applicable t o a quantitative analysis of transitional regions away from ideal adiabaticity. In view of the recent experimental observation of the Berry phase in a superconducting qubit, we illustrate our formulation for a concrete adiabatic case in the Ohmic dissipation. The correction to the total phase together with the geometry-dependent dephasing time is given in a transparent way. The behavior of the geometric phase away from ideal adiabaticity is also analyzed in some detail.
We entertain the idea that the uncertainty relation is not a principle, but rather it is a consequence of quantum mechanics. The uncertainty relation is then a probabilistic statement and can be clearly evaded in processes which occur with a very sma ll probability in a tiny sector of the phase space. This clear evasion is typically realized when one utilizes indirect measurements, and some examples of the clear evasion appear in the system with entanglement though the entanglement by itself is not essential for the evasion. The standard Kennards relation and its interpretation remain intact in our analysis. As an explicit example, we show that the clear evasion of the uncertainty relation for coordinate and momentum in the diffraction process discussed by Ballentine is realized in a tiny sector of the phase space with a very small probability. We also examine the uncertainty relation for a two-spin system with the EPR entanglement and show that no clear evasion takes place in this system with the finite discrete degrees of freedom.
81 - Kazuo Fujikawa 2008
A salient feature of the Schr{o}dinger equation is that the classical radial momentum term $p_{r}^{2}$ in polar coordinates is replaced by the operator $hat{P}^{dagger}_{r} hat{P}_{r}$, where the operator $hat{P}_{r}$ is not hermitian in general. Thi s fact has important implications for the path integral and semi-classical approximations. When one defines a formal hermitian radial momentum operator $hat{p}_{r}=(1/2)((frac{hat{vec{x}}}{r}) hat{vec{p}}+hat{vec{p}}(frac{hat{vec{x}}}{r}))$, the relation $hat{P}^{dagger}_{r} hat{P}_{r}=hat{p}_{r}^{2}+hbar^{2}(d-1)(d-3)/(4r^{2})$ holds in $d$-dimensional space and this extra potential appears in the path integral formulated in polar coordinates. The extra potential, which influences the classical solutions in the semi-classical treatment such as in the analysis of solitons and collective modes, vanishes for $d=3$ and attractive for $d=2$ and repulsive for all other cases $dgeq 4$. This extra term induced by the non-hermitian operator is a purely quantum effect, and it is somewhat analogous to the quantum anomaly in chiral gauge theory.
57 - Kazuo Fujikawa 2008
All the geometric phases are shown to be topologically trivial by using the second quantized formulation. The exact hidden local symmetry in the Schr{o}dinger equation, which was hitherto unrecognized, controls the holonomy associated with both of th e adiabatic and non-adiabatic geometric phases. The second quantized formulation is located in between the first quantized formulation and the field theory, and thus it is convenient to compare the geometric phase with the chiral anomaly in field theory. It is shown that these two notions are completely different.
41 - Kazuo Fujikawa 2007
Recently there have been some controversies about the criterion of the adiabatic approximation. It is shown that an approximate diagonalization of the effective Hamiltonian in the second quantized formulation gives rise to a reliable and unambiguous criterion of the adiabatic approximation. This is illustrated for the model of Marzlin and Sanders and a model related to the geometric phase which can be exactly diagonalized in the present sense.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا