ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive the consistency relations for a chaotic inflation model with a non-minimal coupling to gravity. For a quadratic potential in the limit of a small non-minimal coupling parameter $xi$ and for a quartic potential without assuming small $xi$, w e give the consistency relations among the spectral index $n_s$, the tensor-to-scalar ratio $r$ and the running of the spectral index $alpha$. We find that unlike $r$, $alpha$ is less sensitive to $xi$. If $r<0.1$, then $xi$ is constrained to $xi<0$ and $alpha$ is predicted to be $alphasimeq -8times 10^{-4}$ for a quartic potential. For a general monomial potential, $alpha$ is constrained in the range $-2.7times 10^{-3}<alpha< -6times 10^{-4}$ as long as $|xi|leq 10^{-3}$ if $r<0.1$.
Consistency relations for chaotic inflation with a monomial potential and natural inflation and hilltop inflation are given which involve the scalar spectral index $n_s$, the tensor-to-scalar ratio $r$ and the running of the spectral index $alpha$. T he measurement of $alpha$ with $O(10^{-3})$ and the improvement in the measurement of $n_s$ could discriminate monomial model from natural/hilltop inflation models. A consistency region for general large field models is also presented.
We apply the axion-photon conversion mechanism to the 130 GeV $gamma$-ray line observed by the Fermi satellite. Near the Galactic center, some astrophysical sources and/or particle dark matter can produce energetic axions (or axionlike particles), an d the axions convert to $gamma$ rays in Galactic magnetic fields along their flight to the Earth. Since continuum $gamma$-ray and antiproton productions are sufficiently suppressed in axion production, the scenario fits the 130 GeV $gamma$-ray line without conflicting with cosmic ray measurements. We derive the axion production cross section and the decay rate of dark matter to fit the $gamma$-ray excess as functions of axion parameters. In the scenario, the $gamma$-ray spatial distributions depend on both the dark matter profile and the magnetic field configuration, which will be tested by future $gamma$-ray observations, e.g., H.E.S.S. II, CTA, and GAMMA-400. As an illustrative example, we study realistic supersymmetric axion models, and show the favored parameters that nicely fit the $gamma$-ray excess.
Assuming that inflation is succeeded by a phase of matter domination, which corresponds to a low temperature of reheating $T_r<10^9rm{GeV}$, we evaluate the spectra of gravitational waves induced in the post-inflationary universe. We work with models of hilltop-inflation with an enhanced primordial scalar spectrum on small scales, which can potentially lead to the formation of primordial black holes. We find that a lower reheat temperature leads to the production of gravitational waves with energy densities within the ranges of both space and earth based gravitational wave detectors.
We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property. This talk is based on works (Jittoh et al., 2011).
Measuring the primordial power spectrum on small scales is a powerful tool in inflation model building, yet constraints from Cosmic Microwave Background measurements alone are insufficient to place bounds stringent enough to be appreciably effective. For the very small scale spectrum, those which subtend angles of less than 0.3 degrees on the sky, an upper bound can be extracted from the astrophysical constraints on the possible production of primordial black holes in the early universe. A recently discovered observational by-product of an enhanced power spectrum on small scales, induced gravitational waves, have been shown to be within the range of proposed space based gravitational wave detectors; such as NASAs LISA and BBO detectors, and the Japanese DECIGO detector. In this paper we explore the impact such a detection would have on models of inflation known to lead to an enhanced power spectrum on small scales, namely the Hilltop-type and running mass models. We find that the Hilltop-type model can produce observable induced gravitational waves within the range of BBO and DECIGO for integral and fractional powers of the potential within a reasonable number of e-folds. We also find that the running mass model can produce a spectrum within the range of these detectors, but require that inflation terminates after an unreasonably small number of e-folds. Finally, we argue that if the thermal history of the Universe were to accomodate such a small number of e-folds the Running Mass Model can produce Primordial Black Holes within a mass range compatible with Dark Matter, i.e. within a mass range 10^{20}g< M_{BH}<10^{27}g.
We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.
It has been shown that black holes would have formed in the early Universe if, on any given scale, the spectral amplitude of the Cosmic Microwave Background (CMB) exceeds 10^(-4). This value is within the bounds allowed by astrophysical phenomena for the small scale spectrum of the CMB, corresponding to scales which exit the horizon at the end of slow-roll inflation. Previous work by Kohri et. al. (2007) showed that for black holes to form from a single field model of inflation, the slope of the potential at the end of inflation must be flatter than it was at horizon exit. In this work we show that a phenomenological Hilltop model of inflation, satisfying the Kohri et. al. criteria, could lead to the production of black holes, if the power of the inflaton self-interaction is less than or equal to 3, with a reasonable number or e-folds. We extend our analysis to the running mass model, and confirm that this model results in the production of black holes, and by using the latest WMAP year 5 bounds on the running of the spectral index, and the black hole constraint we update the results of Leach et. al. (2000) excluding more of parameter space.
The recently launched satellite, Fermi Gamma-ray Space Telescope, is expected to find out if cosmic-ray (CR) protons are generated from supernova remnants (SNRs), especially RX J1713.7-3946, by observing the GeV-to-TeV gamma-rays. The GeV emission is thought to be bright if the TeV emission is hadronic, i.e., of proton origin, while dim if leptonic. We reexamine the above view using a simple theoretical model of nonlinear acceleration of particles to calculate the gamma-ray spectrum of Galactic young SNRs. If the nonlinear effects of CR acceleration are considered, it may be impossible to distinguish the evidence of proton acceleration from leptonic in the gamma-ray spectrum of Galactic young SNRs like RX J1713.7-3946. On the other hand, future km^3-class neutrino observations will likely find a clear evidence of the proton acceleration there.
117 - Aya Bamba 2008
Suzaku observations of a TeV unidentified (unID) source, HESS J1745-303, are presented. A possible excess of neutral iron line emission is discovered, and is likely associated with the main part of HESS J1745-303, named region A. It may be an X-ray r eflection nebula where the X-rays from previous Galactic Center (GC) activity are reflected by a molecular cloud. This result further strengthens the assumption that the molecular cloud which is spatially coincident with region A of HESS J1745-303 is located in the GC region. The TeV emission from molecular clouds is reminiscent of the diffuse TeV gamma-rays from the GC giant molecular clouds, and it could have the same emission mechanism. With deep exposure mapping observations by Suzaku, a tight upper-limit on the 2-10 keV continuum diffuse emission from region A is obtained, as 2.1x10^-13ergs s^-1cm^-2. The flux ratio between 1-10 TeV and 2-10 keV is larger than 4. Possible scenarios to reproduce wide-band spectra from keV to TeV are examined. Thermal X-rays from nearby two old supernova remnants, G359.0-0.9 and G359.1-0.5, are detected, and their emission properties are well determined in the present study with deep exposure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا