ترغب بنشر مسار تعليمي؟ اضغط هنا

We have carried out 13CO(J=2-1) observations of the active star-forming region N159 West in the LMC with ALMA. We have found that the CO distribution at a sub-pc scale is highly elongated with a small width. These elongated clouds called filaments sh ow straight or curved distributions with a typical width of 0.5-1.0pc and a length of 5-10pc. All the known infrared YSOs are located toward the filaments. We have found broad CO wings of two molecular outflows toward young high-mass stars in N159W-N and N159W-S, whose dynamical timescale is ~10^4 yrs. This is the first discovery of protostellar outflow in external galaxies. For N159W-S which is located toward an intersection of two filaments we set up a hypothesis that the two filaments collided with each other ~10^5 yrs ago and triggered formation of the high-mass star having ~37 Mo. The colliding clouds show significant enhancement in linewidth in the intersection, suggesting excitation of turbulence in the shocked interface layer between them as is consistent with the magneto-hydro-dynamical numerical simulations (Inoue & Fukui 2013). This turbulence increases the mass accretion rate to ~6x10^-4 Mo yr^-1, which is required to overcome the stellar feedback to form the high-mass star.
We investigated the formation of arc-like structures in the infalling envelope around protostars, motivated by the recent Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the high-density molecular cloud core, MC27/L1521F. We perfo rmed self-gravitational hydrodynamical numerical simulations with an adaptive mesh refinement code. A filamentary cloud with a 0.1~pc width fragments into cloud cores because of perturbations due to weak turbulence. The cloud core undergoes gravitational collapse to form multiple protostars, and gravitational torque from the orbiting protostars produces arc structures extending up to a 1000~AU scale. As well as on a spatial extent, the velocity ranges of the arc structures, $sim0.5,mathrm{km,s}^{-1}$, are in agreement with the ALMA observations. We also found that circumstellar disks are often misaligned in triple system. The misalignment is caused by the tidal interaction between the protostars when they undergo close encounters because of a highly eccentric orbit of the tight binary pair.
We present fully sampled ~3 resolution images of the 12CO(J=2-1), 13CO(J=2-1), and C18O(J=2-1) emission taken with the newly developed 1.85-m mm-submm telescope toward the entire area of the Orion A and B giant molecular clouds. The data were compare d with the J=1-0 of the 12CO, 13CO, and C18O data taken with the Nagoya 4-m telescope and the NANTEN telescope at the same angular resolution to derive the spatial distributions of the physical properties of the molecular gas. We explore the large velocity gradient formalism to determine the gas density and temperature by using the line combinations of 12CO(J=2-1), 13CO(J=2-1), and 13CO(J=1-0) assuming uniform velocity gradient and abundance ratio of CO. The derived gas density is in the range of 500 to 5000 cm-3, and the derived gas temperature is mostly in the range of 20 to 50 K along the cloud ridge with a temperature gradient depending on the distance from the star forming region. We found the high-temperature region at the cloud edge facing to the HII region, indicating that the molecular gas is interacting with the stellar wind and radiation from the massive stars. In addition, we compared the derived gas properties with the Young Stellar Objects distribution obtained with the Spitzer telescope to investigate the relationship between the gas properties and the star formation activity therein. We found that the gas density and star formation efficiency are well positively correlated, indicating that stars form effectively in the dense gas region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا