ترغب بنشر مسار تعليمي؟ اضغط هنا

We calculate the high energy neutrino spectrum from gamma-ray bursts where the emission arises in a dissipative jet photosphere determined by either baryonically or magnetically dominated dynamics, and compare these neutrino spectra to those obtained in conventional internal shock models. We also calculate the diffuse neutrino spectra based on these models, which appear compatible with the current IceCube 40+59 constraints. While a re-analysis based on the models discussed here and the data from the full array would be needed, it appears that only those models with the most extreme parameters are close to being constrained at present. A multi-year operation of the full IceCube and perhaps a next generation of large volume neutrino detectors may be required in order to distinguish between the various models discussed.
101 - Katsuaki Asano , Susumu Inoue , 2009
The prompt emission of gamma-ray bursts (GRBs) is widely thought to be radiation from accelerated electrons, but an appreciably larger amount of energy could be carried by accelerated protons, particularly if GRBs are the sources of ultra-high-energy cosmic rays (UHECRs). We model the expected photon spectra for such proton-dominated GRBs in the internal shock scenario through Monte Carlo simulations, accounting for various processes related to high-energy electrons and protons. Besides proton and muon synchrotron components, emission from photomeson-induced secondary pair cascades becomes crucial, generally enhancing the GeV-TeV and/or eV-keV photons and offering a signature of UHE protons. In some cases, it can overwhelm the primary electron component and result in GRBs peaking in the 10 MeV - 1 GeV range, which may be relevant to some bursts discussed in a recent re-analysis of EGRET TASC data. The dependence of the spectra on key quantities such as the bulk Lorentz factor, magnetic field and proton-to-electron ratio is nontrivial due to the nonlinear nature of cascading and the interplay of electron- and proton-induced components. Observations by {it Fermi}, ground-based telescopes and other facilities should test these expectations and provide critical constraints on the proton acceleration efficiency.
In the framework of the internal shock scenario, we model the broadband prompt emission of gamma-ray bursts (GRBs) with emphasis on the GeV-TeV bands, utilizing Monte Carlo simulations that include various processes associated with electrons and prot ons accelerated to high energies. While inverse Compton emission from primary electrons is often dominant, different proton-induced mechanisms can also give rise to distinct high-energy components, such as synchrotron emission from protons, muons or secondary electrons/positrons injected via photomeson interactions. In some cases, they give rise to double spectral breaks that can serve as unique signatures of ultra-high-energy protons. We discuss the conditions favorable for such emission, and how they are related to the production of ultra-high-energy cosmic rays and neutrinos in internal shocks. Ongoing and upcoming observations by {it GLAST}, atmospheric Cerenkov telescopes and other facilities will test these expectations and provide important information on the physical conditions in GRB outflows.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا