ترغب بنشر مسار تعليمي؟ اضغط هنا

283 - Katrien Kolenberg 2013
The spectacular data delivered by NASAs {it Kepler} mission have not only boosted the discovery of planets orbiting other stars, but they have opened a window on the inner workings of the stars themselves. For the study of the RR Lyrae stars, Kepler has led to a breakthrough. To date, over 50 RR Lyrae stars are known in the Kepler field. They are studied within the RR Lyrae/Cepheid working group of the Kepler Asteroseismic Science Consortium (KASC). This paper highlights some of the most interesting results on RR Lyrae stars obtained through Kepler so far.
With increasingly accurate data on RR Lyrae stars we find that the Blazhko effect may be a rule rather than an exception. However, we still do not know what is the cause of this mysterious amplitude and phase modulation. In my talk, I intended to giv e a glimpse of the properties of Blazhko stars, presenting recent findings concerning what makes Blazhko stars different from their non-modulated counterparts. Recent observations of Blazhko stars obtained from space give some important clues that deserve further exploration.
The knowledge of accurate stellar parameters is a keystone in several fields of stellar astrophysics, such as asteroseismology and stellar evolution. Although the fundamental parameters can be derived both from spectroscopy and multicolour photometry , the results obtained are sometimes affected by systematic uncertainties. In this paper, we present a self-consistent spectral analysis of the pulsating star RR Lyr, which is the primary target for our study of the Blazhko effect. We used high-resolution and high signal-to-noise ratio spectra to carry out a consistent parameter determination and abundance analysis for RR Lyr. We provide a detailed description of the methodology adopted to derive the fundamental parameters and the abundances. Stellar pulsation attains high amplitudes in RR Lyrae stars, and as a consequence the stellar parameters vary significantly over the pulsation cycle. The abundances of the star, however, are not expected to change. From a set of available high-resolution spectra of RR Lyr we selected the phase of maximum radius, at which the spectra are least disturbed by the pulsation. Using the abundances determined at this phase as a starting point, we expect to obtain a higher accuracy in the fundamental parameters determined at other phases. The set of fundamental parameters obtained in this work fits the observed spectrum accurately. Through the abundance analysis, we find clear indications for a depth-dependent microturbulent velocity, that we quantified. We confirm the importance of a consistent analysis of relevant spectroscopic features, application of advanced model atmospheres, and the use of up-to-date atomic line data for the determination of stellar parameters. These results are crucial for further studies, e.g., detailed theoretical modelling of the observed pulsations.
A high percentage of the astrophysically important RR Lyrae stars show a periodic amplitude and/or phase modulation of their pulsation cycles. More than a century after its discovery, this Blazhko effect still lacks acceptable theoretical understandi ng. In one of the plausible models for explaining the phenomenon, the modulation is caused by the effects of a magnetic field. So far, the available observational data have not allowed us to either support nor rule out the presence of a magnetic field in RR Lyrae stars. We intend to determine whether RR Lyrae stars are generally characterized by the presence of a magnetic field organized on a large scale. With the help of the FORS1 instrument at the ESO VLT we performed a spectropolarimetric survey of 17 relatively bright southern RR Lyrae stars, both Blazhko stars and non-modulated stars, and determined their mean longitudinal magnetic field with a typical error bar < 30 G. All our measurements of the mean longitudinal magnetic field resulted in null detections within 3 sigma. From our data we can set an upper limit for the strength of the dipole component of the magnetic fields of RR Lyrae stars to ~ 130 G. Because of the limitations intrinsic to the diagnostic technique, we cannot exclude the presence of higher order multipolar components. The outcome of this survey clarifies that the Blazhko modulation in the pulsation of RR Lyrae stars is not correlated with the presence of a strong, quasi-dipolar magnetic field.
We present our analysis of photometric data in the Johnson B and V filter of the southern Blazhko star SS For. In parallel, we analyzed the V observations obtained with the ASAS-3 photometry of the star gathered between 2000 and 2008. In the frequenc y spectra resulting from a Fourier analysis of our data, the triplet structure is detectable up to high order, both in the B and V data. Moreover, we find evidence for quintuplet components. We confirm from our data that the modulation components decrease less steeply than the harmonics of the main frequency. We derived the variations of the Fourier parameters quantifying the light curve shape over the Blazhko cycle. There is good agreement between the spectroscopic abundance and the metallicity determined from the Fourier parameters of the average light curve. SS For is peculiar as a Blazhko star because of its strong variations around minimum light.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا