ترغب بنشر مسار تعليمي؟ اضغط هنا

We model the multi-wavelength emission in the southern hotspot of the radio quasar 4C74.26. The synchrotron radio emission is resolved near the shock with the MERLIN radio-interferometer, and the rapid decay of this emission behind the shock is inter preted as the decay of the amplified downstream magnetic field as expected for small scale turbulence. Electrons are accelerated to only 0.3 TeV, consistent with a diffusion coefficient many orders of magnitude greater than in the Bohm regime. If the same diffusion coefficient applies to the protons, their maximum energy is only ~100 TeV.
We develop a simple evolutionary scenario for the growth of supermassive black holes (BHs), assuming growth due to accretion only, to learn about the evolution of the BH mass function from $z=3$ to 0 and from it calculate the energy budgets of differ ent modes of feedback. We tune the parameters of the model by matching the derived X-ray luminosity function (XLF) with the observed XLF of active galactic nuclei. We then calculate the amount of comoving kinetic and bolometric feedback as a function of redshift, derive a kinetic luminosity function and estimate the amount of kinetic feedback and $PdV$ work done by classical double Fanaroff-Riley II (FR II) radio sources. We also derive the radio luminosity function for FR IIs from our synthesized population and set constraints on jet duty cycles. Around 1/6 of the jet power from FR II sources goes into $PdV$ work done in the expanding lobes during the time the jet is on. Anti hierarchical growth of BHs is seen in our model due to addition of an amount of mass being accreted on to all BHs independent of the BH mass. The contribution to the total kinetic feedback by active galaxies in a low accretion, kinetically efficient mode is found to be the most significant at $z<1.5$. FR II feedback is found to be a significant mode of feedback above redshifts $zsim 1.5$, which has not been highlighted by previous studies.
96 - Ian Smail 2012
We report the detection of extended X-ray emission around two powerful high-z radio galaxies (HzRGs) at z~3.6 (4C03.24 & 4C19.71) and use these to investigate the origin of extended, Inverse Compton (IC) powered X-ray halos at high z. The halos have X-ray luminosities of Lx~3e44 erg/s and sizes of ~60kpc. Their morphologies are broadly similar to the ~60-kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either CMB or FIR photons from the dust-obscured starbursts in these galaxies. These observations double the number of z>3 HzRGs with X-ray detected IC halos. We compare the IC X-ray to radio luminosity ratios for these new detections to the two previously detected z~3.8 HzRGs. Given the similar redshifts, we would expect comparable X-ray IC luminosities if CMB mm photons are the seed field for the IC emission. Instead the two z~3.6 HzRGs, which are ~4x fainter in the FIR, also have ~4x fainter X-ray IC emission. Including a further six z>2 radio sources with IC X-ray halos from the literature, we suggest that in the more compact (lobe sizes <100-200kpc), majority of radio sources, the bulk of the IC emission may be driven by scattering of locally produced FIR photons from luminous, dust-obscured starbursts within these galaxies, rather than CMB photons. The resulting X-ray emission can ionise the gas on ~100-200-kpc scales around these systems and thus form their extended Ly-alpha emission line halos. The starburst and AGN activity in these galaxies are thus combining to produce an effective and wide-spread feedback process, acting on the long-term gas reservoir for the galaxy. If episodic radio activity and co-eval starbursts are common in massive, high-z galaxies, then this IC-feedback mechanism may affect the star-formation histories of massive galaxies. [Abridged]
The existing theoretical framework for the energies stored in the synchrotron-emitting lobes of radio galaxies and quasars doesnt properly account for the curved spectral shape that many of them exhibit. We characterise these spectra using parameters that are straightforwardly observable in the era of high-resolution, low-frequency radio astronomy: the spectral curvature and the turnover in the frequency spectrum. This characterisation gives the Lorentz factor at the turnover in the energy distribution (we point out that this is distinctly different from the Lorentz factor corresponding to the turnover frequency in a way that depends on the amount of curvature in the spectrum) and readily gives the equipartition magnetic field strength and the total energy of the radiating plasma obviating the need for any assumed values of the cutoff frequencies to calculate these important physical quantities. This framework readily yields the form of the X-ray emission due to inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by the electrons in the plasma having Lorentz factors of $sim$1000. We also present the contribution to CMB anisotropies due to relativistic plasmas such as giant radio galaxy lobes, expressed in terms of the extent to which the lobes have their magnetic field and particle energies are in equipartition with one another.
We numerically investigate the dynamics of orbits in 3D circumbinary phase-space as a function of binary eccentricity and mass fraction. We find that inclined circumbinary orbits in the elliptically-restricted three-body problem display a nodal libra tion mechanism in the longitude of the ascending node and in the inclination to the plane of the binary. We (i) analyse and quantify the behaviour of these orbits with reference to analytical work performed by Farago & Laskar (2010) and (ii) investigate the stability of these orbits over time. This work is the first dynamically aware analysis of the stability of circumbinary orbits across both binary mass fraction and binary eccentricity. This work also has implications for exoplanetary astronomy in the existence and determination of stable orbits around binary systems.
We present new GMRT observations of HDF 130, an inverse-Compton (IC) ghost of a giant radio source that is no longer being powered by jets. We compare the properties of HDF 130 with the new and important constraint of the upper limit of the radio flu x density at 240 MHz to an analytic model. We learn what values of physical parameters in the model for the dynamics and evolution of the radio luminosity and X-ray luminosity (due to IC scattering of the cosmic microwave background (CMB)) of a Fanaroff-Riley II (FR II) source are able to describe a source with features (lobe length, axial ratio, X-ray luminosity, photon index and upper limit of radio luminosity) similar to the observations. HDF 130 is found to agree with the interpretation that it is an IC ghost of a powerful double-lobed radio source, and we are observing it at least a few Myr after jet activity (which lasted 5--100 Myr) has ceased. The minimum Lorentz factor of injected particles into the lobes from the hotspot is preferred to be $gammasim10^3$ for the model to describe the observed quantities well, assuming that the magnetic energy density, electron energy density, and lobe pressure at time of injection into the lobe are linked by constant factors according to a minimum energy argument, so that the minimum Lorentz factor is constrained by the lobe pressure. We also apply the model to match the features of 6C 0905+3955, a classical double FR II galaxy thought to have a low-energy cutoff of $gammasim10^4$ in the hotspot due to a lack of hotspot inverse-Compton X-ray emission. The models suggest that the low-energy cutoff in the hotspots of 6C 0905+3955 is $gammagtrsim 10^3$, just slightly above the particles required for X-ray emission.
We present simulated images of Supernova 1993J at 8.4 GHz using Very Long Baseline Interferometry (VLBI) techniques. A spherically symmetric source model is convolved with realistic uv-plane distributions, together with standard imaging procedures, t o assess the extent of instrumental effects on the recovered brightness distribution. In order to facilitate direct comparisons between the simulations and published VLBI images of SN1993J, the observed uv-coverage is determined from actual VLBI observations made in the years following its discovery. The underlying source model only exhibits radial variation in its density profile, with no azimuthal dependence and, even though this model is morphologically simple, the simulated VLBI observations qualitatively reproduce many of the azimuthal features of the reported VLBI observations, such as appearance and evolution of complex azimuthal structure and apparent rotation of the shell. We demonstrate that such features are inexorably coupled to the uv-plane sampling. The brightness contrast between the peaks and the surrounding shell material are not as prominent in the simulations (which of course assume no antenna- or baseline-based amplitude or phase errors, meaning no self-calibration procedures will have incorporated any such features in models). It is conclusive that incomplete uv-plane sampling has a drastic effect on the final images for observations of this nature. Difference imaging reveals residual emission up to the 8 sigma level. Extreme care should be taken when using interferometric observations to directly infer the structure of objects such as supernovae.
We present a new, high resolution (5 per pixel) near-infrared extinction map of the Nuclear Bulge using data from the UKIDSS-GPS. Using photometry from the J, H and K-bands we show that the extinction law parameter is also highly variable in this reg ion on similar scales to the absolute extinction. We show that only when this extinction law variation is taken into account can the extinction be measured consistently at different wavelengths.
We present new XMM-Newton data of the high-redshift (z=1.883), Mpc-sized giant radio galaxy 6C 0905+39. The larger collecting area and longer observation time for our new data means that we can better characterise the extended X-ray emission, in part icular its spectrum, which arises from cosmic microwave background photons scattered into the X-ray band by the energetic electrons in the spent synchrotron plasma of the (largely) radio-quiet lobes of 6C 0905+39. We calculate the energy that its jet-ejected plasma has dumped into its surroundings in the last 3 X 10^7 years and discuss the impact that similar, or even more extreme, examples of spent, radio-quiet lobes would have on their surroundings. Interestingly, there is an indication that the emission from the hotspots is softer than the rest of the extended emission and the core, implying it is due to synchrotron emission. We confirm our previous detection of the low-energy turnover in the eastern hotspot of 6C 0905+39.
Our XMM-Newton spectrum of the giant, high-redshift (z=1.88) radio galaxy 6C 0905+39 shows that it contains one of the most powerful, high-redshift, Compton-thick quasars known. Its spectrum is very hard above 2 keV. The steep XMM spectrum below that energy is shown to be due to extended emission from the radio bridge using Chandra data. The nucleus of 6C 0905+39 has a column density of 3.5 (+1.4,-0.4) X 10^24 cm^-2 and absorption-corrected X-ray luminosity of 1.7 (+0.9,-0.1) X 10^45 erg/s in the 2-10 keV band. A lower redshift active galaxy in the same field, SDSS J090808.36+394313.6, may also be Compton-thick.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا