ترغب بنشر مسار تعليمي؟ اضغط هنا

In 1956 Dyson analyzed the low-energy excitations of a ferromagnet using a Hamiltonian that was non-Hermitian with respect to the standard inner product. This allowed for a facile rendering of these excitations (known as spin waves) as weakly interac ting bosonic quasi-particles. More than 50 years later, we have the full denouement of non-Hermitian quantum mechanics formalism at our disposal when considering Dysons work, both technically and contextually. Here we recast Dysons work on ferromagnets explicitly in terms of two inner products, with respect to which the Hamiltonian is always self-adjoint, if not manifestly Hermitian. Then we extend his scheme to doped antiferromagnets described by the t-J model, in hopes of shedding light on the physics of high-temperature superconductivity.
We present a new signature by which to one could potentially discriminate between a spectrum of gravitational radiation generated by a self-ordering scalar field vs that of inflation, specifically a comparison of the magnitude of a flat spectrum at f requencies probed by future direct detection experiments to the magnitude of a possible polarization signal in the Cosmic Microwave Background (CMB) radiation. In the process we clarify several issues related to the proper calculation of such modes, focusing on the effect of post-horizon-crossing evolution.
Using a large N sigma model approximation we explicitly calculate the power spectrum of gravitational waves arising from a global phase transition in the early universe and we confirm that it is scale invariant, implying an observation of such a spec trum may not be a unique feature of inflation. Moreover, the predicted amplitude can be over 3 orders of magnitude larger than the naive dimensional estimate, implying that even a transition that occurs after inflation may dominate in Cosmic Microwave Background polarization or other gravity wave signals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا