ترغب بنشر مسار تعليمي؟ اضغط هنا

The NASA space telescope Kepler has provided unprecedented time-series observations which have revolutionised the field of asteroseismology, i.e. the use of stellar oscillations to probe the interior of stars. The Kepler-data include observations of stars in open clusters, which are particularly interesting for asteroseismology. One of the clusters observed with Kepler is NGC 6811, which is the target of the present paper. However, apart from high-precision time-series observations, sounding the interiors of stars in open clusters by means of asteroseismology also requires accurate and precise atmospheric parameters as well as cluster membership indicators for the individual stars. We use medium-resolution (R~25,000) spectroscopic observations, and three independent analysis methods, to derive effective temperatures, surface gravities, metallicities, projected rotational velocities and radial velocities, for 15 stars in the field of the open cluster NGC 6811. We discover two double-lined and three single-lined spectroscopic binaries. Eight stars are classified as either certain or very probable cluster members, and three stars are classified as non-members. For four stars, cluster membership could not been assessed. Five of the observed stars are G-type giants which are located in the colour-magnitude diagram in the region of the red clump of the cluster. Two of these stars are surely identified as red clump stars for the first time. For those five stars, we provide chemical abundances of 31 elements. The mean radial-velocity of NGC 6811 is found to be +6.68$pm$0.08 km s$^{-1}$ and the mean metallicity and overall abundance pattern are shown to be very close to solar with an exception of Ba which we find to be overabundant.
The open clusters in the Kepler and CoRoT fields potentially provide tight constraints for tests of stellar models and observational methods because they allow a combination of complementary methods. We are in the process of identi- fying and measuri ng parameters for detached eclipsing binaries (dEBs) in the open clusters in the Kepler and CoRoT fields. We make use of measurements of dEBs in the clusters to test the accuracy of asteroseismic scaling relations for mass. We are able to provide strong indications that the asteroseismic scaling relations over- estimate the stellar mass, but we are not yet able to distinguish between different proposed corrections from the literature. We argue how our ongoing measurements of more dEBs in more clusters, complemented by dEBs in the field, should be able to break the degeneracy. We also briefly describe how we can identify cluster stars that have evolved through non-standard evolution by making use of ensemble asteroseismology.
Ages have been derived for 55 globular clusters (GCs) from overlays of isochrones onto the turnoff photometry, assuming distances based on fits of zero-age horizontal branch (ZAHB) models to the lower bound of the observed distributions of HB stars. The error bar arising just from the fitting of ZAHBs and isochrones is ~ +/- 0.25 Gyr, while that associated with distance and chemical abundance uncertainties is ~ +/- 1.5-2 Gyr. Ages vary from mean values of ~12.5 Gyr at [Fe/H] < -1.7 to ~11 Gyr at [Fe/H] > -1.0. At intermediate metallicities, the age-metallicity relation (AMR) appears to be bifurcated: one branch apparently contains clusters with disk-like kinematics, whereas the other branch is populated by clusters with halo-type orbits. There is no apparent dependence of age on Galactocentric distance (R_G) nor is there a clear correlation of HB type with age. Subtle variations in the subgiant branch (SGB) slopes of [Fe/H] < -1.5 GCs are tentatively attributed to helium abundance differences. Curiously, GCs with steep M13-like SGBs tend to be massive systems, located at small R_G, that show the strongest evidence for multiple stellar populations. The others are typically low-mass systems that, at the present time, should not be able to retain the matter lost by mass-losing stars. The apparent separation of the two groups in terms of their present-day gas retention properties is difficult to understand if all GCs were initial ~20 times their current masses. The lowest mass systems may have never been able to retain enough gas to produce a significant population of second-generation stars; in this case, the observed light element abundance variations were presumably present in the gas out of which the observed cluster stars formed.
We present the discovery of the totally eclipsing long-period (P = 771.8 d) binary system WOCS 23009 in the old open cluster NGC 6819 that contains both an evolved star near central hydrogen exhaustion and a low-mass (0.45 Msun) star. This system was previously known to be a single-lined spectroscopic binary, but the discovery of an eclipse near apastron using data from the Kepler space telescope makes it clear that the system has an inclination that is very close to 90 degrees. Although the secondary star has not been identified in spectra, the mass of the primary star can be constrained using other eclipsing binaries in the cluster. The combination of total eclipses and a mass constraint for the primary star allows us to determine a reliable mass for the secondary star and radii for both stars, and to constrain the cluster age. Unlike well-measured stars of similar mass in field binaries, the low-mass secondary is not significantly inflated in radius compared to model predictions. The primary star characteristics, in combination with cluster photometry and masses from other cluster binaries, indicates a best age of 2.62+/-0.25 Gyr, although stellar model physics may introduce systematic uncertainties at the ~10% level. We find preliminary evidence that the asteroseismic predictions for red giant masses in this cluster are systematically too high by as much as 8%.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا