ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the entangling properties of multipartite unitary gates with respect to the measure of entanglement called one-tangle. Putting special emphasis on the case of three parties, we derive an analytical expression for the entangling power of an $ n$-partite gate as an explicit function of the gate, linking the entangling power of gates acting on $n$-partite Hilbert space of dimension $d_1 ldots d_n$ to the entanglement of pure states in the Hilbert space of dimension $(d_1 ldots d_n)^2$. Furthermore, we evaluate its mean value averaged over the unitary and orthogonal groups, analyze the maximal entangling power and relate it to the absolutely maximally entangled (AME) states of a system with $2n$ parties. Finally, we provide a detailed analysis of the entangling properties of three-qubit unitary and orthogonal gates.
We introduce a notion of nuclear numerical range defined as the set of expectation values of a given operator $A$ among normalized pure states, which belong to the nucleus of an auxiliary operator $Z$. This notion proves to be applicable to investiga te models of quantum noise with block-diagonal structure of the corresponding Kraus operators. The problem of constructing a suitable quantum error correction code for this model can be restated as a geometric problem of finding intersection points of certain sets in the complex plane. This technique, worked out in the case of two-qubit systems, can be generalized for larger dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا