ترغب بنشر مسار تعليمي؟ اضغط هنا

The combination of Dirac physics and elasticity has been explored at length in graphene where the so--called elastic gauge fields have given rise to an entire new field of research and applications: Straintronics. The fact that these elastic fields c ouple to fermions as the electromagnetic field, implies that many electromagnetic responses will have elastic counterparts not explored before. In this work we will first show that the presence of elastic gauge fields will be the rule rather than the exception in most of the topologically non--trivial materials in two and three dimensions. In particular we will extract the elastic gauge fields associated to the recently observed Weyl semimetals, the three dimensional graphene. As it is known, quantum electrodynamics suffers from the chiral anomaly whose consequences have been recently explored in matter systems. We will show that, associated to the physics of the anomalies, and as a counterpart of the Hall conductivity, elastic materials will have a Hall viscosity in two and three dimensions with a coefficient orders of magnitude bigger than the previously studied response. The magnitude and generality of the new effect will greatly improve the chances for the experimental observation of this topological, non dissipative response.
We consider the effect of a periodic perturbation with frequency $omega$ on the holographic N=4 plasma represented by the planar AdS black hole. The response of the system is given by exponentially decaying waves. The corresponding complex wave numbe rs can be found by solving wave equations in the AdS black hole background with infalling boundary conditions on the horizon in an analogous way as in the calculation of quasinormal modes. The complex momentum eigenvalues have an interpretation as poles of the retarded Greens functions, where the inverse of the imaginary part gives an absorption length $lambda$. At zero frequency we obtain the screening length for a static field. These are directly related to the glueball masses in the dimensionally reduced theory. We also point out that the longest screening length corresponds to an operator with non-vanishing R-charge and thus does not have an interpretation as a QCD3 glueball.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا