ترغب بنشر مسار تعليمي؟ اضغط هنا

The hypervolume indicator is an increasingly popular set measure to compare the quality of two Pareto sets. The basic ingredient of most hypervolume indicator based optimization algorithms is the calculation of the hypervolume contribution of single solutions regarding a Pareto set. We show that exact calculation of the hypervolume contribution is #P-hard while its approximation is NP-hard. The same holds for the calculation of the minimal contribution. We also prove that it is NP-hard to decide whether a solution has the least hypervolume contribution. Even deciding whether the contribution of a solution is at most $(1+eps)$ times the minimal contribution is NP-hard. This implies that it is neither possible to efficiently find the least contributing solution (unless $P = NP$) nor to approximate it (unless $NP = BPP$). Nevertheless, in the second part of the paper we present a fast approximation algorithm for this problem. We prove that for arbitrarily given $eps,delta>0$ it calculates a solution with contribution at most $(1+eps)$ times the minimal contribution with probability at least $(1-delta)$. Though it cannot run in polynomial time for all instances, it performs extremely fast on various benchmark datasets. The algorithm solves very large problem instances which are intractable for exact algorithms (e.g., 10000 solutions in 100 dimensions) within a few seconds.
We consider the computation of the volume of the union of high-dimensional geometric objects. While showing that this problem is #P-hard already for very simple bodies (i.e., axis-parallel boxes), we give a fast FPRAS for all objects where one can: ( 1) test whether a given point lies inside the object, (2) sample a point uniformly, (3) calculate the volume of the object in polynomial time. All three oracles can be weak, that is, just approximate. This implies that Klees measure problem and the hypervolume indicator can be approximated efficiently even though they are #P-hard and hence cannot be solved exactly in time polynomial in the number of dimensions unless P=NP. Our algorithm also allows to approximate efficiently the volume of the union of convex bodies given by weak membership oracles. For the analogous problem of the intersection of high-dimensional geometric objects we prove #P-hardness for boxes and show that there is no multiplicative polynomial-time $2^{d^{1-epsilon}}$-approximation for certain boxes unless NP=BPP, but give a simple additive polynomial-time $epsilon$-approximation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا