ترغب بنشر مسار تعليمي؟ اضغط هنا

78 - Karine Demyk 2010
High deuterium fractionation is observed in various types of environment such as prestellar cores, hot cores and hot corinos. It has proven to be an efficient probe to study the physical and chemical conditions of these environments. The study of the deuteration of different molecules helps us to understand their formation. This is especially interesting for complex molecules such as methanol and bigger molecules for which it may allow to differentiate between gas-phase and solid-state formation pathways. Methanol exhibits a high deuterium fractionation in hot corinos. Since CH3OH is thought to be a precursor of methyl formate we expect that deuterated methyl formate is produced in such environments. We have searched for the singly-deuterated isotopologue of methyl formate, DCOOCH3, in IRAS 16293-2422, a hot corino well-known for its high degree of methanol deuteration. We have used the IRAM/JCMT unbiased spectral survey of IRAS 16293-2422 which allows us to search for the DCOOCH3 rotational transitions within the survey spectral range (80-280 GHz, 328-366 GHz). The expected emission of deuterated methyl formate is modelled at LTE and compared with the observations.} We have tentatively detected DCOOCH3 in the protostar IRAS 16293-2422. We assign eight lines detected in the IRAM survey to DCOOCH3. Three of these lines are affected by blending problems and one line is affected by calibration uncertainties, nevertheless the LTE emission model is compatible with the observations. A simple LTE modelling of the two cores in IRAS 16293-2422, based on a previous interferometric study of HCOOCH3, allows us to estimate the amount of DCOOCH3 in IRAS 16293-2422. Adopting an excitation temperature of 100 K and a source size of 2arcsec and 1farcs5 for the A and B cores, respectively, we find that N(A,DCOOCH3) = N(B,DCOOCH3) ~ 6.10^14 /cm2. The derived deuterium fractionation is ~ 15%, consistent with values for other deuterated species in this source and much greater than that expected from the deuterium cosmic abundance. DCOOCH3, if its tentative detection is confirmed, should now be considered in theoretical models that study complex molecule formation and their deuteration mechanisms. Experimental work is also needed to investigate the different chemical routes leading to the formation of deuterated methyl formate.
Ethyl cyanide is an abundant molecule in hot molecular clouds. Lines from 13C isotopically substituted ethyl cyanide were identified in Orion. To enable the search and the possible detection of other isotopologues of ethyl cyanide in interstellar obj ects, we have studied the rotational spectrum of deuterated ethyl cyanide: CH2DCH2CN (in-plane and out-of-plane) and CH3CHDCN and the spectrum of15N substituted ethyl cyanide CH3CH2C15N. The rotational spectrum of each species in the ground state was measured in the microwave and millimeter-submillimeter wavelength range using a waveguide Fourier transform spectrometer (8 - 17 GHz) and a source-modulated spectrometer employing backward-wave oscillators (BWOs) (150 - 260 and 580 - 660 GHz). From the fitting procedure, accurate spectroscopic constants were derived for each of the species. These new sets of spectroscopic constants enable us to predict reliably the rotational spectrum (lines frequencies and intensities) in the 4-1000 GHz frequency range and for J and Ka up to 80 and 31, respectively. Combined with IRAM 30 m antenna observations of Orion, this experimental study allowed us to detect 15N substituted ethyl cyanide for the first time in Orion. The derived column density and rotational temperature are 10^13 cm-2 and 150 K for the plateau and 3 10^14 cm-2 and 300 K for the hot core. The deuterated species were searched for but were not detected. The upper limit to the column density of each deuterated isotopologues was 10^14 cm-2.
Methyl formate in its first torsionally excited state (vt=1 at 131 cm-1) is detected for the first time toward W51 e2. All transitions from excited methyl formate within the observed spectral range are actually detected (82 transitions) and no strong lines are missing. The column density of the excited state is comparable to that of the ground state. For a source size of 7 we find that Trot = 104 +/- 14 K and N = 9.4 +4.0/-2.8 x 10^16 cm-2 for the excited state and Trot = 176 +/- 24 K and N = 1.7 +.2/-.2 x 10^17 cm-2 for the ground state. Lines from ethyl cyanide in its two first excited states (vt=1, torsion mode at 212 cm-1) and (vb=1, CCN in-plane bending mode at 206 cm-1) are also present in the observed spectrum. However blending problems prevent a precise estimate of its abundance. With regard to the number of lines of excited methyl formate and ethyl cyanide detected in W51 e2, it appears that excited states of large molecules certainly account for a large number of unidentified lines in spectral survey of molecular clouds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا