ترغب بنشر مسار تعليمي؟ اضغط هنا

The development of synoptic sky surveys has led to a massive amount of data for which resources needed for analysis are beyond human capabilities. To process this information and to extract all possible knowledge, machine learning techniques become n ecessary. Here we present a new method to automatically discover unknown variable objects in large astronomical catalogs. With the aim of taking full advantage of all the information we have about known objects, our method is based on a supervised algorithm. In particular, we train a random forest classifier using known variability classes of objects and obtain votes for each of the objects in the training set. We then model this voting distribution with a Bayesian network and obtain the joint voting distribution among the training objects. Consequently, an unknown object is considered as an outlier insofar it has a low joint probability. Our method is suitable for exploring massive datasets given that the training process is performed offline. We tested our algorithm on 20 millions light-curves from the MACHO catalog and generated a list of anomalous candidates. We divided the candidates into two main classes of outliers: artifacts and intrinsic outliers. Artifacts were principally due to air mass variation, seasonal variation, bad calibration or instrumental errors and were consequently removed from our outlier list and added to the training set. After retraining, we selected about 4000 objects, which we passed to a post analysis stage by perfoming a cross-match with all publicly available catalogs. Within these candidates we identified certain known but rare objects such as eclipsing Cepheids, blue variables, cataclysmic variables and X-ray sources. For some outliers there were no additional information. Among them we identified three unknown variability types and few individual outliers that will be followed up for a deeper analysis.
We present an automatic classification method for astronomical catalogs with missing data. We use Bayesian networks, a probabilistic graphical model, that allows us to perform inference to pre- dict missing values given observed data and dependency r elationships between variables. To learn a Bayesian network from incomplete data, we use an iterative algorithm that utilises sampling methods and expectation maximization to estimate the distributions and probabilistic dependencies of variables from data with missing values. To test our model we use three catalogs with missing data (SAGE, 2MASS and UBVI) and one complete catalog (MACHO). We examine how classification accuracy changes when information from missing data catalogs is included, how our method compares to traditional missing data approaches and at what computational cost. Integrating these catalogs with missing data we find that classification of variable objects improves by few percent and by 15% for quasar detection while keeping the computational cost the same.
We present a new classification method for quasar identification in the EROS-2 and MACHO datasets based on a boosted version of Random Forest classifier. We use a set of variability features including parameters of a continuous auto regressive model. We prove that continuous auto regressive parameters are very important discriminators in the classification process. We create two training sets (one for EROS-2 and one for MACHO datasets) using known quasars found in the LMC. Our models accuracy in both EROS-2 and MACHO training sets is about 90% precision and 86% recall, improving the state of the art models accuracy in quasar detection. We apply the model on the complete, including 28 million objects, EROS-2 and MACHO LMC datasets, finding 1160 and 2551 candidates respectively. To further validate our list of candidates, we crossmatched our list with a previous 663 known strong candidates, getting 74% of matches for MACHO and 40% in EROS-2. The main difference on matching level is because EROS-2 is a slightly shallower survey which translates to significantly lower signal-to-noise ratio lightcurves.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا