ترغب بنشر مسار تعليمي؟ اضغط هنا

[Abridged] We study the spectral properties of intermediate mass galaxies as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early-types (ellipticals), late-type (disk-dominated) face-o n spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their SDSS g-r colour and use the spectral fitting code VESPA to calculate time-resolved star-formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star-formation in the last 500 Myr than blue late-type spirals by up to a factor of three, but share similar star-formation histories at earlier times. This decline in recent star-formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star-formation curtailed in the last 500 Myrs. The red late-type spirals are however still forming stars approximately 17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star-formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals. Blue ellipticals show similar star-formation histories as blue spirals (regardless of type), except they have formed less stars in the last 100 Myrs. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies.
108 - Karen L. Masters 2012
We study the observed correlation between atomic gas content and the likelihood of hosting a large scale bar in a sample of 2090 disc galaxies. Such a test has never been done before on this scale. We use data on morphologies from the Galaxy Zoo proj ect and information on the galaxies HI content from the ALFALFA blind HI survey. Our main result is that the bar fraction is significantly lower among gas rich disc galaxies than gas poor ones. This is not explained by known trends for more massive (stellar) and redder disc galaxies to host more bars and have lower gas fractions: we still see at fixed stellar mass a residual correlation between gas content and bar fraction. We discuss three possible causal explanations: (1) bars in disc galaxies cause atomic gas to be used up more quickly, (2) increasing the atomic gas content in a disc galaxy inhibits bar formation, and (3) bar fraction and gas content are both driven by correlation with environmental effects (e.g. tidal triggering of bars, combined with strangulation removing gas). All three explanations are consistent with the observed correlations. In addition our observations suggest bars may reduce or halt star formation in the outer parts of discs by holding back the infall of external gas beyond bar co-rotation, reddening the global colours of barred disc galaxies. This suggests that secular evolution driven by the exchange of angular momentum between stars in the bar, and gas in the disc, acts as a feedback mechanism to regulate star formation in intermediate mass disc galaxies.
376 - Karen L. Masters 2010
We investigate the effect of dust on spiral galaxies by measuring the inclination-dependence of optical colours for 24,276 well-resolved SDSS galaxies visually classified in Galaxy Zoo. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 magnitudes for the ugri passbands. We split the sample into bulgy (early-type) and disky (late-type) spirals using the SDSS fracdeV (or f_DeV) parameter and show that the average face-on colour of bulgy spirals is redder than the average edge-on colour of disky spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disk ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with disky spirals at M_r ~ -21.5 mags having the most reddening. This decrease of reddening for the most luminous spirals has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering.
We study the spectroscopic properties and environments of red spiral galaxies found by the Galaxy Zoo project. By carefully selecting face-on, disk dominated spirals we construct a sample of truly passive disks (not dust reddened, nor dominated by ol d stellar populations in a bulge). As such, our red spirals represent an interesting set of possible transition objects between normal blue spirals and red early types. We use SDSS data to investigate the physical processes which could have turned these objects red without disturbing their morphology. Red spirals prefer intermediate density regimes, however there are no obvious correlations between red spiral properties and environment - environment alone is not sufficient to determine if a spiral will become red. Red spirals are a small fraction of spirals at low masses, but are a significant fraction at large stellar masses - massive galaxies are red independent of morphology. We confirm that red spirals have older stellar popns and less recent star formation than the main spiral population. While the presence of spiral arms suggests that major star formation cannot have ceased long ago, we show that these are not recent post-starbursts, so star formation must have ceased gradually. Intriguingly, red spirals are ~4 times more likely than normal spirals to host optically identified Seyfert or LINER, with most of the difference coming from LINERs. We find a curiously large bar fraction in the red spirals suggesting that the cessation of star formation and bar instabilities are strongly correlated. We conclude by discussing the possible origins. We suggest they may represent the very oldest spiral galaxies which have already used up their reserves of gas - probably aided by strangulation, and perhaps bar instabilities moving material around in the disk.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا