ترغب بنشر مسار تعليمي؟ اضغط هنا

68 - Xiaohui Li , Kan Wu , Xuechao Yu 2014
Phase noise is very important for the ultrafast pulse application in telecommunication, ultrafast diagnose, material science, and biology. In this paper, two types of carbon nano-materials, single-wall carbon nanotube and graphene oxide, are investig ated for noise suppression in ultrafast photonics. Various properties of the wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the phase noise of the ultrafast pulses. A reduced-noise femtosecond fiber laser is experimentally demonstrated by optimizing the above parameters of carbon material based SAs. The phase noise reduction more than 10 dB at 10 kHz can be obtained in the experiments. To our knowledge, this is the first time that the relationship between different carbon material based SAs and the phase noise of mode-locked lasers has been investigated. This work will pave the way to get a high-quality ultrashort pulse in passively mode-locked fiber lasers.
With this paper we bring about a discussion on the computing potential of complex optical networks and provide experimental demonstration that an optical fiber network can be used as an analog processor to calculate matrix inversion. A 3x3 matrix is inverted as a proof-of-concept demonstration using a fiber network containing three nodes and operating at telecomm wavelength. For an NxN matrix, the overall solving time (including setting time of the matrix elements and calculation time of inversion) scales as O(N^2), whereas matrix inversion by most advanced computer algorithms requires ~O(N^2.37) computational time. For well-conditioned matrices, the error of the inversion performed optically is found to be less than 3%, limited by the accuracy of measurement equipment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا