ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the stellar populations of a sample of 162 Lyman-alpha emitting galaxies (LAEs) at z = 3.1 in the Extended Chandra Deep Field South, using deep Spitzer IRAC data available from the GOODS and SIMPLE surveys to derive reliable stellar po pulation estimates. We divide the LAEs according to their rest-frame near-IR luminosities into IRAC-detected and IRAC-undetected samples. About 70% of the LAEs are undetected in 3.6 micron down to [3.6] = 25.2 AB. Stacking analysis reveals that the average stellar population of the IRAC-undetected sample has an age of ~ 200 Myr and a mass of ~ 3x10^8 solar masses, consistent with the expectation that LAEs are mostly young and low-mass galaxies. On the other hand, the IRAC-detected LAEs are on average significantly older and more massive, with an average age > 1 Gyr and mass ~ 10^10 solar masses. Comparing the IRAC colors and magnitudes of the LAEs to z ~ 3 Lyman break galaxies (LBGs) shows that the IRAC-detected LAEs lie at the faint blue end of the LBG color-magnitude distribution, suggesting that IRAC-detected LAEs may be the low mass extension of the LBG population. We also present tentative evidence for a small fraction (~ 5%) of obscured AGN within the LAE sample. Our results suggest that LAEs posses a wide range of ages and masses. Additionally, the presence of evolved stellar populations inside LAEs suggests that the Lyman-alpha luminous phase of galaxies may either be a long-lasting or recurring phenomenon.
We studied the clustering properties and multiwavelength spectral energy distributions of a complete sample of 162 Ly Alpha-Emitting (LAE) galaxies at z=3.1 discovered in deep narrow-band MUSYC imaging of the Extended Chandra Deep Field South. LAEs w ere selected to have observed frame equivalent widths >80A and emission line fluxes >1.5E-17 erg/cm^2/s. Only 1% of our LAE sample appears to host AGN. The LAEs exhibit a moderate spatial correlation length of r_0=3.6+0.8-1.0 Mpc, corresponding to a bias factor b=1.7+0.3-0.4, which implies median dark matter halo masses of log10(M_med) = 10.9+0.5-0.9 M_sun. Comparing the number density of LAEs, (1.5+-0.3)E-3/Mpc^3, with the number density of these halos finds a mean halo occupation ~1-10%. The evolution of galaxy bias with redshift implies that most z=3.1 LAEs evolve into present-day galaxies with L<2.5L*, whereas other z>3 galaxy populations typically evolve into more massive galaxies. Halo merger trees show that z=0 descendants occupy halos with a wide range of masses, with a median descendant mass close to that of L*. Only 30% of LAEs have sufficient stellar mass (>~3E9 M_sun) to yield detections in deep Spitzer-IRAC imaging. A two-population SED fit to the stacked UBVRIzJK+[3.6,4.5,5.6,8.0]micron fluxes of the IRAC-undetected objects finds that the typical LAE has low stellar mass (1.0+0.6-0.4 E9 M_sun), moderate star formation rate (2+-1 M_sun/yr), a young component age of 20+30-10 Myr, and little dust (A_V<0.2). The best fit model has 20% of the mass in the young stellar component, but models without evolved stars are also allowed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا