ترغب بنشر مسار تعليمي؟ اضغط هنا

Upcoming beyond fifth generation (5G) communications systems aim at further enhancing key performance indicators and fully supporting brand new use cases by embracing emerging techniques, e.g., reconfigurable intelligent surface (RIS), integrated com munication, localization, and sensing, and mmWave/THz communications. The wireless intelligence empowered by state-of-the-art artificial intelligence techniques has been widely considered at the transceivers, and now the paradigm is deemed to be shifted to the smart control of radio propagation environment by virtue of RISs. In this article, we argue that to harness the full potential of RISs, localization and communication must be tightly coupled. This is in sharp contrast to 5G and earlier generations, where localization was a minor additional service. To support this, we first introduce the fundamentals of RIS mmWave channel modeling, followed by RIS channel state information acquisition and link establishment. Then, we deal with the connection between localization and communications, from a separate and joint perspective.
Reconfigurable intelligent surfaces (RISs) are one of the foremost technological enablers of future wireless systems. They improve communication and localization by providing a strong non-line-of-sight path to the receiver. In this paper, we propose a pilot transmission method to enable the receiver to separate signals arriving from different RISs and from the uncontrolled multipath. This facilitates channel estimation and localization, as the channel or its geometric parameters can be estimated for each path separately. Our method is based on designing temporal phase profiles that are orthogonal across RISs without affecting the RIS beamforming capabilities. We take into consideration the limited resolution of the RIS phase shifters and show that in the presence of this practical limitation, orthogonal phase profiles can be designed based on Butson-type Hadamard matrices. For a localization scenario, we show that with our proposed method the estimator can attain the theoretical lower bound even with one-bit RIS phase resolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا