ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of radio relics is usually explained via diffusive shock acceleration (DSA) or re-acceleration of electrons at/from merger shocks in galaxy clusters. The case of acceleration is challenged by the low predicted efficiency of low-Mach number merger shocks, unable to explain the power observed in most radio relics. In this Letter we present the discovery of a new giant radio relic around the galaxy cluster Abell 2249 ($z=0.0838$) using LOFAR. It is special since it has the lowest surface brightness of all known radio relics. We study its radio and X-ray properties combinig LOFAR data with uGMRT, JVLA and XMM. This object has a total power of $L_{1.4rm GHz}=4.1pm 0.8 times 10^{23}$ W Hz$^{-1}$ and integrated spectral index $alpha = 1.15pm 0.23$. We infer for this radio relic a lower bound on the magnetisation of $Bgeq 0.4, mu$G, a shock Mach number of $mathcal{M}approx 3.79$, and a low acceleration efficiency consistent with DSA. This result suggests that a missing population of relics may become visible thanks to the unprecedented sensitivity of the new generation of radio telescopes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا