ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an unprecedented measurement of the disc stability and local instability scales in the luminous infrared Seyfert 1 host, NGC7469, based on ALMA observations of dense gas tracers and with a synthesized beam of 165 x 132 pc. While we confirm that non-circular motions are not significant in redistributing the dense interstellar gas in this galaxy, we find compelling evidence that the dense gas is a suitable tracer for studying the origin of its intensely high-mass star forming ring-like structure. Our derived disc stability parameter accounts for a thick disc structure and its value falls below unity at the radii in which intense star formation is found. Furthermore, we derive the characteristic instability scale and find a striking agreement between our measured scale of ~ 180 pc, and the typical sizes of individual complexes of young and massive star clusters seen in high-resolution images.
61 - Kambiz Fathi 2013
We start with introducing one of the most fundamental notions of differential geometry, Manifolds. We present some properties and constructions such as submanifolds, tangent spaces and the tangent map. Then we continue with introducing the real and c omplex projective space, and describe them from some different points of view. This part is finished by showing that CP^n is a Grassmannian manifold. At this stage we are ready to present the main subject of this thesis. The Schwarzian curvature, usually seems to be an accidental by-product of the calculations, can be seen as a geometric interpretation of the Schwarzian derivative. Flanders interpreted the Schwarzian derivative of a C function as a curvature for curves in the projective line by using the moving frame method of Cartan. The same argumentation was extended by Gao to obtain the Schwarzian curvatures for curves in higher dimensional projective spaces. I give detailed presentation of Gaos work, where he presented the general formulas for the Schwarzian curvatures for curves in CP^n and gives some properties for the behaviour of the formulas, for example the transformation rules under change of coordinates. The Schwarzian curvatures for curves in CP, CP^2 and CP^3 are calculated, and some examples are given.
We present a kinematic analysis of the dense molecular gas in the central 200 parsecs of the nearby galaxy NGC1097, based on Cycle 0 observations with the Atacama Large Millimeter/sub-millimeter Array (ALMA). We use the HCN(4-3) line to trace the den sest interstellar molecular gas, and quantify its kinematics, and estimate an inflow rate for the molecular gas. We find a striking similarity between the ALMA kinematic data and the analytic spiral inflow model that we have previously constructed based on ionized gas velocity fields on larger scales. We are able to follow dense gas streaming down to 40 pc distance from the supermassive black hole in this Seyfert 1 galaxy. In order to fulfill marginal stability, we deduce that the dense gas is confined to a very thin disc, and we derive a dense gas inflow rate of 0.09 Msun/yr at 40 pc radius. Combined with previous values from the Ha and CO gas, we calculate a combined molecular and ionized gas inflow rate of 0.2 Msun/yr at 40 pc distance from the central supermassive black hole of NGC1097.
We compute the exponential disc scalelength for 686 disc galaxies with spectroscopic redshifts out to redshift 5.8 based on Hubble Space Telescope archival data. We compare the results with our previous measurements based on 30000 nearby galaxies fro m the Sloan Digital Sky Survey. Our results confirm the presence of a dominating exponential component in galaxies out to this redshift. At the highest redshifts, the disc scalelength for the brightest galaxies with absolute magnitude between -24 and -22 is up to a factor 8 smaller compared to that in the local Universe. This observed scalelength decrease is significantly greater than the value predicted by a cosmological picture in which baryonic disc scalelength scales with the virial radius of the dark matter halo.
We report the discovery of a two-armed mini-spiral structure within the inner kiloparsec of the E0 LINER/Seyfert 1 galaxy Arp102B. The arms are observed in H-alpha emission and located East and West of the nucleus, extending up to about 1 kpc from it . We use narrow-band imaging from the Hubble Space Telescope Advanced Camera for Surveys, in combination with archival VLA radio images at 3.6 and 6 cm to investigate the origin of the nuclear spiral. From the H-alpha luminosity of the spiral, we obtain an ionized gas mass of the order of one million solar masses. One possibility is that the nuclear spiral represents a gas inflow triggered by a recent accretion event which has replenished the accretion disk, giving rise to the double-peaked emission-line profiles characteristic of Arp102B. However, the radio images show a one-sided curved jet which correlates with the eastern spiral arm observed in the H-alpha image. A published milliarcsecond radio image also shows one-sided structure at position angle about 40 degrees, approximately aligned with the inner part of the eastern spiral arm. The absence of a radio counter-part to the western spiral arm is tentatively interpreted as indicating that the jet is relativistic, with an estimated speed of 0.45c. Estimates of the jet kinetic energy and the ionizing luminosity of the active nucleus indicate that both are capable of ionizing the gas along the spiral arms. We conclude that, although the gas in the nuclear region may have originated in an accretion event, the mini-spiral is most likely the result of a jet-cloud interaction rather than an inflowing stream.
92 - Kambiz Fathi 2011
Disk scale length and central surface brightness for a sample of about 29955 bright disk galaxies from the Sloan Digital Sky Survey have been analysed. Cross correlation of the SDSS sample with the LEDA catalogue allowed us to investigate the variati on of the scale lengths for different types of disk/spiral galaxies and present distributions and typical trends of scale lengths all the SDSS bands with linear relations that indicate the relation that connect scale lengths in one passband to another. We use the volume corrected results in the r-band and revisit the relation between these parameters and the galaxy morphology. The derived scale lengths presented here are representative for a typical galaxy mass of 10^10.8 solarmasses, and the RMS dispersion is larger for more massive galaxies. We analyse the scale-length-central disk brightness plane and further investigate the Freeman Law and confirm that it indeed defines an upper limit for disk central surface brightness in bright disks (r<17.0), and that disks in late type spirals (T > 6) have fainter central surface brightness. Our results are based on a sample of galaxies in the local universe (z< 0.3) that is two orders of magnitudes larger than any sample previously studied, and deliver statistically significant results that provide a comprehensive test bed for future theoretical studies and numerical simulations of galaxy formation and evolution.
Nuclear regions of galaxies generally host a mixture of components with different exitation, composition, and kinematics. Derivation of emission line ratios and kinematics could then be misleading, if due correction is not made for the limited spatia l and spectral resolutions of the observations. The aim of this paper is to demonstrate, with application to a long slit spectrum of the Seyfert2 galaxy NGC1358, how line intensities and velocities, together with modelling and knowledge of the point spread function, may be used to resolve the differing structures. In the situation outlined, the observed kinematics differs for different spectral lines. From the observed intensity and velocity distributions of a number of spectral lines and with some reasonable assumptions to diminish the number of free parameters, the true line ratios and velocity structures may be deduced. A preliminary solution for the nuclear structure of NGC1358 is obtained, involving a nuclear point source and an emerging outflow of high excitation with a post shock cloud, as well as a nuclear emission line disk rotating in the potential of a stellar bulge and expressing a radial exitation gradient. The method results in a likely scenario for the nuclear structure of NGC1358. For definitive results an extrapolation of the method to two dimensions combined with the use of integral field spectroscopy will generally be necessary.
We have derived disk scale lengths for 30374 non-interacting disk galaxies in all five SDSS bands. Virtual Observatory methods and tools were used to define, retrieve, and analyse the images for this unprecedentedly large sample classified as disk/sp iral galaxies in the LEDA catalogue. Cross correlation of the SDSS sample with the LEDA catalogue allowed us to investigate the variation of the scale lengths for different types of disk/spiral galaxies. We further investigat asymmetry, concentration, and central velocity dispersion as indicators of morphological type, and are able to assess how the scale length varies with respect to galaxy type. We note however, that the concentration and asymmetry parameters have to be used with caution when investigating type dependence of structural parameters in galaxies. Here, we present the scale length derivation method and numerous tests that we have carried out to investigate the reliability of our results. The average r-band disk scale length is 3.79 kpc, with an RMS dispersion of 2.05 kpc, and this is a typical value irrespective of passband and galaxy morphology, concentration, and asymmetry. The derived scale lengths presented here are representative for a typical galaxy mass of $10^{10.8pm 0.54} rm{M}_odot$, and the RMS dispersion is larger for more massive galaxies. Distributions and typical trends of scale lengths have also been derived in all the other SDSS bands with linear relations that indicate the relation that connect scale lengths in one passband to another. Such transformations could be used to test the results of forthcoming cosmological simulations of galaxy formation and evolution of the Hubble sequence.
Nuclear regions of galaxies generally host a mixture of components with different exitation, composition, and kinematics. Derivation of emission line ratios and kinematics could then be misleading, if due correction is not made for the limited spatia l and spectral resolutions of the observations.The aim of this paper is to demonstrate, with application to a long slit spectrum of the Seyfert 2 galaxy NGC 1358, how line intensities and velocities, together with modelling and knowledge of the point spread function, may be used to resolve the differing structures. In the situation outlined above, the observed kinematics differs for different spectral lines. From the observed intensity and velocity distributions of a number of spectral lines and with some reasonable assumptions to diminish the number of free parameters, the true line ratios and velocity structures may be deduced. A preliminary solution for the nuclear structure of NGC 1358 is obtained, involving a nuclear point source and an emerging outflow of high exitation, as well as a nuclear emission line disk rotating in the potential of a stellar bulge and expressing a radial excitation gradient. The method results in a likely scenario for the nuclear structure of the Seyfert 2 galaxy NGC 1358. For definitive results an extrapolation of the method to two dimensions combined with the use of integral field spectroscopy will generally be necessary.
We present a harmonic expansion of the observed line-of-sight velocity field as a method to recover and investigate spiral structures in the nuclear regions of galaxies. We apply it to the emission-line velocity field within the circumnuclear starfor ming ring of NGC1097, obtained with the GMOS-IFU spectrograph. The radial variation of the third harmonic terms are well described by a logarithmic spiral, from which we interpret that the gravitational potential is weakly perturbed by a two-arm spiral density wave with inferred pitch angle of of 52+/-4 degrees. This interpretation predicts a two-arm spiral distortion in the surface brightness, as hinted by the dust structures in central images of NGC1097, and predicts a combined one-arm and three-arm spiral structure in the velocity field, as revealed in the non-circular motions of the ionised gas within the circumnuclear region of this galaxy. Next, we use a simple spiral perturbation model to constrain the fraction of the measured non-circular motions that is due to radial inflow. We combine the resulting inflow velocity with the gas density in the spiral arms, inferred from emission line ratios, to estimate the mass inflow rate as a function of radius, which reaches about 0.011 Msun/yr at a distance of 70 pc from the center. This value corresponds to a fraction of about 4.2 x 10^{-3} of the Eddington mass accretion rate onto the central black hole in this LINER/Seyfert1 galaxy. We conclude that the line-of-sight velocity not only can provide a cleaner view of nuclear spirals than the associated dust, but that the presented method also allows the quantitative study of these possibly important links in fueling the centers of galaxies, including providing a handle on the mass inflow rate as a function of radius.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا