ترغب بنشر مسار تعليمي؟ اضغط هنا

82 - Kai Yao , Kaizhu Huang , Jie Sun 2021
We consider unsupervised cell nuclei segmentation in this paper. Exploiting the recently-proposed unpaired image-to-image translation between cell nuclei images and randomly synthetic masks, existing approaches, e.g., CycleGAN, have achieved encourag ing results. However, these methods usually take a two-stage pipeline and fail to learn end-to-end in cell nuclei images. More seriously, they could lead to the lossy transformation problem, i.e., the content inconsistency between the original images and the corresponding segmentation output. To address these limitations, we propose a novel end-to-end unsupervised framework called Aligned Disentangling Generative Adversarial Network (AD-GAN). Distinctively, AD-GAN introduces representation disentanglement to separate content representation (the underling spatial structure) from style representation (the rendering of the structure). With this framework, spatial structure can be preserved explicitly, enabling a significant reduction of macro-level lossy transformation. We also propose a novel training algorithm able to align the disentangled content in the latent space to reduce micro-level lossy transformation. Evaluations on real-world 2D and 3D datasets show that AD-GAN substantially outperforms the other comparison methods and the professional software both quantitatively and qualitatively. Specifically, the proposed AD-GAN leads to significant improvement over the current best unsupervised methods by an average 17.8% relatively (w.r.t. the metric DICE) on four cell nuclei datasets. As an unsupervised method, AD-GAN even performs competitive with the best supervised models, taking a further leap towards end-to-end unsupervised nuclei segmentation.
In this work, we consider model robustness of deep neural networks against adversarial attacks from a global manifold perspective. Leveraging both the local and global latent information, we propose a novel adversarial training method through robust optimization, and a tractable way to generate Latent Manifold Adversarial Examples (LMAEs) via an adversarial game between a discriminator and a classifier. The proposed adversarial training with latent distribution (ATLD) method defends against adversarial attacks by crafting LMAEs with the latent manifold in an unsupervised manner. ATLD preserves the local and global information of latent manifold and promises improved robustness against adversarial attacks. To verify the effectiveness of our proposed method, we conduct extensive experiments over different datasets (e.g., CIFAR-10, CIFAR-100, SVHN) with different adversarial attacks (e.g., PGD, CW), and show that our method substantially outperforms the state-of-the-art (e.g., Feature Scattering) in adversarial robustness by a large accuracy margin. The source codes are available at https://github.com/LitterQ/ATLD-pytorch.
Recent deep generative models have achieved promising performance in image inpainting. However, it is still very challenging for a neural network to generate realistic image details and textures, due to its inherent spectral bias. By our understandin g of how artists work, we suggest to adopt a `structure first detail next workflow for image inpainting. To this end, we propose to build a Pyramid Generator by stacking several sub-generators, where lower-layer sub-generators focus on restoring image structures while the higher-layer sub-generators emphasize image details. Given an input image, it will be gradually restored by going through the entire pyramid in a bottom-up fashion. Particularly, our approach has a learning scheme of progressively increasing hole size, which allows it to restore large-hole images. In addition, our method could fully exploit the benefits of learning with high-resolution images, and hence is suitable for high-resolution image inpainting. Extensive experimental results on benchmark datasets have validated the effectiveness of our approach compared with state-of-the-art methods.
This paper proposes a novel nonlinear activation mechanism typically for convolutional neural network (CNN), named as reborn mechanism. In sharp contrast to ReLU which cuts off the negative phase value, the reborn mechanism enjoys the capacity to reb orn and reconstruct dead neurons. Compared to other improved ReLU functions, reborn mechanism introduces a more proper way to utilize the negative phase information. Extensive experiments validate that this activation mechanism is able to enhance the model representation ability more significantly and make the better use of the input data information while maintaining the advantages of the original ReLU function. Moreover, reborn mechanism enables a non-symmetry that is hardly achieved by traditional CNNs and can act as a channel compensation method, offering competitive or even better performance but with fewer learned parameters than traditional methods. Reborn mechanism was tested on various benchmark datasets, all obtaining better performance than previous nonlinear activation functions.
AdaBelief, one of the current best optimizers, demonstrates superior generalization ability compared to the popular Adam algorithm by viewing the exponential moving average of observed gradients. AdaBelief is theoretically appealing in that it has a data-dependent $O(sqrt{T})$ regret bound when objective functions are convex, where $T$ is a time horizon. It remains however an open problem whether the convergence rate can be further improved without sacrificing its generalization ability. %on how to exploit strong convexity to further improve the convergence rate of AdaBelief. To this end, we make a first attempt in this work and design a novel optimization algorithm called FastAdaBelief that aims to exploit its strong convexity in order to achieve an even faster convergence rate. In particular, by adjusting the step size that better considers strong convexity and prevents fluctuation, our proposed FastAdaBelief demonstrates excellent generalization ability as well as superior convergence. As an important theoretical contribution, we prove that FastAdaBelief attains a data-dependant $O(log T)$ regret bound, which is substantially lower than AdaBelief. On the empirical side, we validate our theoretical analysis with extensive experiments in both scenarios of strong and non-strong convexity on three popular baseline models. Experimental results are very encouraging: FastAdaBelief converges the quickest in comparison to all mainstream algorithms while maintaining an excellent generalization ability, in cases of both strong or non-strong convexity. FastAdaBelief is thus posited as a new benchmark model for the research community.
Disentangled Graph Convolutional Network (DisenGCN) is an encouraging framework to disentangle the latent factors arising in a real-world graph. However, it relies on disentangling information heavily from a local range (i.e., a node and its 1-hop ne ighbors), while the local information in many cases can be uneven and incomplete, hindering the interpretabiliy power and model performance of DisenGCN. In this paper, we introduce a novel Local and Global Disentangled Graph Convolutional Network (LGD-GCN) to capture both local and global information for graph disentanglement. LGD-GCN performs a statistical mixture modeling to derive a factor-aware latent continuous space, and then constructs different structures w.r.t. different factors from the revealed space. In this way, the global factor-specific information can be efficiently and selectively encoded via a message passing along these built structures, strengthening the intra-factor consistency. We also propose a novel diversity promoting regularizer employed with the latent space modeling, to encourage inter-factor diversity. Evaluations of the proposed LGD-GCN on the synthetic and real-world datasets show a better interpretability and improved performance in node classification over the existing competitive models.
Deep neural networks enjoy a powerful representation and have proven effective in a number of applications. However, recent advances show that deep neural networks are vulnerable to adversarial attacks incurred by the so-called adversarial examples. Although the adversarial example is only slightly different from the input sample, the neural network classifies it as the wrong class. In order to alleviate this problem, we propose the Deep Minimax Probability Machine (DeepMPM), which applies MPM to deep neural networks in an end-to-end fashion. In a worst-case scenario, MPM tries to minimize an upper bound of misclassification probabilities, considering the global information (i.e., mean and covariance information of each class). DeepMPM can be more robust since it learns the worst-case bound on the probability of misclassification of future data. Experiments on two real-world datasets can achieve comparable classification performance with CNN, while can be more robust on adversarial attacks.
Recently proposed adversarial training methods show the robustness to both adversarial and original examples and achieve state-of-the-art results in supervised and semi-supervised learning. All the existing adversarial training methods consider only how the worst perturbed examples (i.e., adversarial examples) could affect the model output. Despite their success, we argue that such setting may be in lack of generalization, since the output space (or label space) is apparently less informative.In this paper, we propose a novel method, called Manifold Adversarial Training (MAT). MAT manages to build an adversarial framework based on how the worst perturbation could affect the distributional manifold rather than the output space. Particularly, a latent data space with the Gaussian Mixture Model (GMM) will be first derived.On one hand, MAT tries to perturb the input samples in the way that would rough the distributional manifold the worst. On the other hand, the deep learning model is trained trying to promote in the latent space the manifold smoothness, measured by the variation of Gaussian mixtures (given the local perturbation around the data point). Importantly, since the latent space is more informative than the output space, the proposed MAT can learn better a robust and compact data representation, leading to further performance improvement. The proposed MAT is important in that it can be considered as a superset of one recently-proposed discriminative feature learning approach called center loss. We conducted a series of experiments in both supervised and semi-supervised learning on three benchmark data sets, showing that the proposed MAT can achieve remarkable performance, much better than those of the state-of-the-art adversarial approaches. We also present a series of visualization which could generate further understanding or explanation on adversarial examples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا