ترغب بنشر مسار تعليمي؟ اضغط هنا

Lead halide perovskite based micro- and nano- lasers have been widely studied in past two years. Due to their long carrier diffusion length and high external quantum efficiency, lead halide perovskites have been considered to have bright future in op toelectronic devices, especially in the green gap wavelength region. However, the quality (Q) factors of perovskite lasers are unspectacular compared to conventional microdisk lasers. The record value of full width at half maximum (FWHM) at threshold is still around 0.22 nm. Herein we synthesized solution-processed, single-crystalline CH3NH3PbBr3 perovskite microrods and studied their lasing actions. In contrast to entirely pumping a microrod on substrate, we partially excited the microrods that were hanging in the air. Consequently, single-mode or few-mode laser emissions have been successfully obtained from the whispering-gallery like diamond modes, which are confined by total internal reflection within the transverse plane. Owning to the better light confinement and high crystal quality, the FWHM at threshold have been significantly improved. The smallest FWHM at threshold is around 0.1 nm, giving a Q factor over 5000.
Perovskite based micro- and nano- lasers have attracted considerable research attention in past two years. However, the properties of perovskite devices are mostly fixed once they are synthesized. Here we demonstrate the tailoring of lasing propertie s of perovskite nanowire lasers via nano-manipulation. By utilizing a tungsten probe, one nanowire has been lifted from the wafer and re-positioned its two ends on two nearby perovskite blocks. Consequently, the conventional Fabry-Perot lasers are completely suppressed and a single laser peak has been observed. The corresponding numerical model reveals that the single-mode lasing operation is formed by the whispering gallery mode in the transverse plane of perovskite nanowire. Our research provides a simple way to tailor the properties of nanowire and it will be essential for the applications of perovskite optoelectronics.
Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Our researches are the first demonstrations of two-photon pumped nanolasers in perovskite nanowires. We believe our finding will significantly expand the application of perovskite in low-cost nonlinear optical devices such as optical limiting, optical switch, and biomedical imaging et al.
112 - Meng Li , Nan Zhang , Kaiyang Wang 2015
Recently, on-chip single-mode laser emission has attracted considerable research attention due to its wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect o r inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism for single-mode operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the frequency detuning. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser.
Light confinement and amplification in micro- & nano-fiber have been intensively studied and a number of applications have been developed. However, the typical micro- & anno- fibers are usually free-standing or positioned on a substrate with lower re fractive index to ensure the light confinement and guiding mode. Here we numerically and experimentally demonstrate the possibility of confining light within a microfiber on a high refractive index substrate. In contrast to the strong leaky to the substrate, we found that the radiation loss was dependent on the radius of microfiber and the refractive index contrast. Consequently, quasi-guiding modes could be formed and the light could propagate and be amplified in such systems. By fabricating tapered silica fiber and dye-doped polymer fiber and placing them on sapphire substrates, the light propagation, amplification, and laser behaviors have been experimentally studied to verify the quasi-guiding modes in microfer with higher index substrate. We believe that our research will be essential for the applications of micro- and nano-fibers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا