ترغب بنشر مسار تعليمي؟ اضغط هنا

Driven by the vision of intelligent connection of everything and digital twin towards 6G, a myriad of new applications, such as immersive extended reality, autonomous driving, holographic communications, intelligent industrial internet, will emerge i n the near future, holding the promise to revolutionize the way we live and work. These trends inspire a novel technical design principle that seamlessly integrates two originally decoupled functionalities, i.e., wireless communication and sensing, into one system in a symbiotic way, which is dubbed symbiotic sensing and communications (SSaC), to endow the wireless network with the capability to see and talk to the physical world simultaneously. Noting that the term SSaC is used instead of ISAC (integrated sensing and communications) because the word ``symbiotic/symbiosis is more inclusive and can better accommodate different integration levels and evolution stages of sensing and communications. Aligned with this understanding, this article makes the first attempts to clarify the concept of SSaC, illustrate its vision, envision the three-stage evolution roadmap, namely neutralism, commensalism, and mutualism of SaC. Then, three categories of applications of SSaC are introduced, followed by detailed description of typical use cases in each category. Finally, we summarize the major performance metrics and key enabling technologies for SSaC.
Vehicle-to-Everything (V2X) will create many new opportunities in the area of wireless communications, while its feasibility on enabling vehicular positioning has not been explored yet. Vehicular positioning is a crucial operation for autonomous driv ing. Its complexity and stringent safety requirement render conventional technologies like RADAR and LIDAR inadequate. This article aims at investigating whether V2X can help vehicular positioning from different perspectives. We first explain V2Xs critical advantages over other approaches and suggest new scenarios of V2X-based vehicular positioning. Then we review the state-of-the-art positioning techniques discussed in the ongoing 3GPP standardization and point out their limitations. Lastly, some promising research directions for V2X-based vehicular positioning are presented, which shed light on realizing fully autonomous driving by overcoming the current barriers.
Autonomous driving (auto-driving) has been becoming a killer technology for next generation vehicles, whereas some fatal accidents grow concerns about its safety. A fundamental function for safer auto-driving is to recognize the vehicles locations, t ermed vehicular positioning. The state-of-the-art vehicular positioning is to rely on anchors that are stationary objects whose locations are known, i.e. satellites for GPS and base stations for cellular positioning. It is important for reliable positioning to install anchors densely, helping find enough anchors nearby. For the deployment to be cost-effective, there are some trials to use backscatter tags as alternative anchors by deploying them on a road surface, but its gain is limited by several reasons such as short contact time and difficulties in maintenance. Instead, we propose a new backscatter-tag assisted vehicular positioning system where tags are deployed along a roadside, which enables the extension of contact duration and facilitates the maintenance. On the other hand, there is a location mismatch between the vehicle and the tag, calling for developing a new backscatter transmission to estimate their relative position. To this end, we design a novel waveform called joint frequency-and-phase modulation (JFPM) for backscatter-tag assisted vehicular positioning where a transmit frequency is modulated for the distance estimation assuming that the relevant signal is clearly differentiable from the others while the phase modulation helps the differentiation. The JFPM waveform leads to exploiting the maximum Degree-of-Freedoms (DoFs) of backscatter channel in which multiple-access and broadcasting channels coexist, leading to more accurate positioning verified by extensive simulations.
Accurate vehicular sensing is a basic and important operation in autonomous driving. Unfortunately, the existing techniques have their own limitations. For instance, the communication-based approach (e.g., transmission of GPS information) has high la tency and low reliability while the reflection-based approach (e.g., RADAR) is incapable of detecting hidden vehicles (HVs) without line-of-sight. This is arguably the reason behind some recent fatal accidents involving autonomous vehicles. To address this issue, this paper presents a novel HV-sensing technology that exploits multi-path transmission from a HV to a sensing vehicle (SV). The powerful technology enables the SV to detect multiple HV-state parameters including position, orientation of driving direction, and size. Its implementation does not even require transmitter-receiver synchronization like conventional mobile positioning techniques. Our design approach leverages estimated information on multi-path (AoA/AoD/ToA) and their geometric relations. As a result, a complex system of equations or optimization problems, where the desired HV-state parameters are variables, can be formulated for different channel-noise conditions. The development of intelligent solution methods ranging from least-square estimator to disk/box minimization yields a set of practical HV-sensing techniques. We study their feasibility conditions in terms of the required number of paths. Furthermore, practical solutions, including sequential path combining and random directional beamforming, are proposed to enable HV-sensing given insufficient paths. Last, realistic simulation of driving in both highway and rural scenarios demonstrates the effectiveness of the proposed techniques. In summary, the proposed technique will enhance the capabilities of existing vehicular sensing technologies by enabling HV-sensing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا